Spaces:
Runtime error
Runtime error
import gradio as gr | |
import clip | |
import torch | |
import utils | |
clip_model = "RN50x4" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model, preprocess = clip.load(clip_model, device=device, jit=False) | |
model.eval() | |
def grad_cam_fn(text, img, saliency_layer): | |
resize = model.visual.input_resolution | |
img = img.resize((resize, resize)) | |
text_input = clip.tokenize([text]).to(device) | |
text_feature = model.encode_text(text_input).float() | |
image_input = preprocess(img).unsqueeze(0).to(device) | |
attn_map = utils.gradCAM( | |
model.visual, | |
image_input, | |
text_feature, | |
getattr(model.visual, saliency_layer) | |
) | |
attn_map = attn_map.squeeze().detach().cpu().numpy() | |
attn_map = utils.getAttMap(img, attn_map) | |
return attn_map | |
interface = gr.Interface( | |
fn=grad_cam_fn, | |
inputs=[ | |
gr.inputs.Textbox( | |
label="Target Text", | |
lines=1), | |
gr.inputs.Image( | |
label='Input Image', | |
image_mode="RGB", | |
type='pil', | |
shape=(512, 512)), | |
gr.inputs.Dropdown( | |
["layer4", "layer3", "layer2", "layer1"], | |
default="layer4", | |
label="Saliency Layer") | |
], | |
outputs=gr.outputs.Image( | |
type="pil", | |
label="Attention Map"), | |
examples=[ | |
['a cat lying on the floor', 'assets/cat_dog.jpg', 'layer4'], | |
['a dog sitting', 'assets/cat_dog.jpg', 'layer4'] | |
], | |
description="OpenAI CLIP Grad CAM") | |
interface.launch() | |