Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import mediapipe as mp
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Initialize Mediapipe Pose Estimation
|
7 |
+
mp_pose = mp.solutions.pose
|
8 |
+
pose = mp_pose.Pose(static_image_mode=True, model_complexity=2)
|
9 |
+
mp_drawing = mp.solutions.drawing_utils
|
10 |
+
|
11 |
+
def estimate_pose(image):
|
12 |
+
# Convert image from BGR (OpenCV) to RGB
|
13 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
14 |
+
# Perform pose detection
|
15 |
+
results = pose.process(image_rgb)
|
16 |
+
|
17 |
+
if not results.pose_landmarks:
|
18 |
+
return image # No pose found, return the original image
|
19 |
+
|
20 |
+
# Draw pose landmarks on the image
|
21 |
+
annotated_image = image.copy()
|
22 |
+
mp_drawing.draw_landmarks(
|
23 |
+
annotated_image,
|
24 |
+
results.pose_landmarks,
|
25 |
+
mp_pose.POSE_CONNECTIONS,
|
26 |
+
landmark_drawing_spec=mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=2),
|
27 |
+
connection_drawing_spec=mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2, circle_radius=2),
|
28 |
+
)
|
29 |
+
|
30 |
+
return annotated_image
|
31 |
+
|
32 |
+
# Gradio Interface
|
33 |
+
interface = gr.Interface(
|
34 |
+
fn=estimate_pose,
|
35 |
+
inputs=gr.Image(type="numpy", label="Upload an Image"),
|
36 |
+
outputs=gr.Image(type="numpy", label="Pose Landmarks Image"),
|
37 |
+
title="Human Pose Estimation",
|
38 |
+
description="Upload an image to detect and visualize human pose landmarks.",
|
39 |
+
)
|
40 |
+
|
41 |
+
# Launch the Gradio app
|
42 |
+
if __name__ == "__main__":
|
43 |
+
interface.launch()
|