commit openai example notebook
Browse files
app/Programatically_Accessing_OpenAI_Endpoints_with_Python.ipynb
ADDED
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "UIuhLOcmCdyR"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"### Using the OpenAI Library to Programmatically Access GPT-3.5-turbo!\n",
|
10 |
+
"\n",
|
11 |
+
"This notebook was authored by [Chris Alexiuk](https://www.linkedin.com/in/csalexiuk/)"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": 1,
|
17 |
+
"metadata": {
|
18 |
+
"colab": {
|
19 |
+
"base_uri": "https://localhost:8080/"
|
20 |
+
},
|
21 |
+
"id": "3qCKaH6vD-jZ",
|
22 |
+
"outputId": "b9898a5f-36a7-4d8d-d760-310187cf31fa"
|
23 |
+
},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"# !pip install openai cohere tiktoken -qU"
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"cell_type": "markdown",
|
31 |
+
"metadata": {
|
32 |
+
"id": "XxS23_1zpYid"
|
33 |
+
},
|
34 |
+
"source": [
|
35 |
+
"### OpenAI API Key"
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "code",
|
40 |
+
"execution_count": 2,
|
41 |
+
"metadata": {
|
42 |
+
"colab": {
|
43 |
+
"base_uri": "https://localhost:8080/"
|
44 |
+
},
|
45 |
+
"id": "tpnsDCfEbsqS",
|
46 |
+
"outputId": "1011f74e-624b-4800-89ff-c83152d34c1f"
|
47 |
+
},
|
48 |
+
"outputs": [],
|
49 |
+
"source": [
|
50 |
+
"import os\n",
|
51 |
+
"import openai\n",
|
52 |
+
"import getpass\n",
|
53 |
+
"\n",
|
54 |
+
"# set the OPENAI_API_KEY environment variable\n",
|
55 |
+
"openai.api_key = getpass.getpass(\"OpenAI API Key:\")"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "markdown",
|
60 |
+
"metadata": {
|
61 |
+
"id": "YHD49z39pbIS"
|
62 |
+
},
|
63 |
+
"source": [
|
64 |
+
"### Our First Prompt\n",
|
65 |
+
"\n",
|
66 |
+
"You can reference OpenAI's [documentation](https://platform.openai.com/docs/api-reference/authentication?lang=python) if you get stuck!\n",
|
67 |
+
"\n",
|
68 |
+
"Let's create a `ChatCompletion` model to kick things off!\n",
|
69 |
+
"\n",
|
70 |
+
"There are three \"roles\" available to use:\n",
|
71 |
+
"\n",
|
72 |
+
"- `system`\n",
|
73 |
+
"- `assistant`\n",
|
74 |
+
"- `user`\n",
|
75 |
+
"\n",
|
76 |
+
"OpenAI provides some context for these roles [here](https://help.openai.com/en/articles/7042661-chatgpt-api-transition-guide)\n",
|
77 |
+
"\n",
|
78 |
+
"Let's just stick to the `user` role for now and send our first message to the endpoint!\n",
|
79 |
+
"\n",
|
80 |
+
"If we check the documentation, we'll see that it expects it in a list of prompt objects - so we'll be sure to do that!"
|
81 |
+
]
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"cell_type": "code",
|
85 |
+
"execution_count": 3,
|
86 |
+
"metadata": {
|
87 |
+
"id": "g0AL4VTwyWLN"
|
88 |
+
},
|
89 |
+
"outputs": [
|
90 |
+
{
|
91 |
+
"data": {
|
92 |
+
"text/plain": [
|
93 |
+
"ChatCompletion(id='chatcmpl-9D4ZMhNvYSJaf3Rx8cDkyW2ypwPog', choices=[Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content='A woodchuck could chuck as much wood as a woodchuck would chuck if a woodchuck could chuck wood.', role='assistant', function_call=None, tool_calls=None))], created=1712902856, model='gpt-3.5-turbo-0125', object='chat.completion', system_fingerprint='fp_c2295e73ad', usage=CompletionUsage(completion_tokens=25, prompt_tokens=25, total_tokens=50))"
|
94 |
+
]
|
95 |
+
},
|
96 |
+
"execution_count": 3,
|
97 |
+
"metadata": {},
|
98 |
+
"output_type": "execute_result"
|
99 |
+
}
|
100 |
+
],
|
101 |
+
"source": [
|
102 |
+
"from openai import OpenAI\n",
|
103 |
+
"\n",
|
104 |
+
"client = OpenAI(api_key=openai.api_key)\n",
|
105 |
+
"\n",
|
106 |
+
"YOUR_PROMPT = \"How much wood could a woodchuck chuck if a woodchuck could chuck wood?\"\n",
|
107 |
+
"\n",
|
108 |
+
"client.chat.completions.create(\n",
|
109 |
+
" model=\"gpt-3.5-turbo\",\n",
|
110 |
+
" messages=[{\"role\" : \"user\", \"content\" : YOUR_PROMPT}]\n",
|
111 |
+
")"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "markdown",
|
116 |
+
"metadata": {
|
117 |
+
"id": "FD_Z64hGy6RV"
|
118 |
+
},
|
119 |
+
"source": [
|
120 |
+
"As you can see, the prompt comes back with a tonne of information that we can use when we're building our applications!\n",
|
121 |
+
"\n",
|
122 |
+
"Let's focus on extending that a bit, and incorporate a `system` message as well!\n",
|
123 |
+
"\n",
|
124 |
+
"Also, we'll be building some helper functions to display the prompts with Markdown!\n",
|
125 |
+
"\n",
|
126 |
+
"We'll also wrap our prompts so we don't have to keep making dictionaries for them!"
|
127 |
+
]
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"cell_type": "code",
|
131 |
+
"execution_count": 4,
|
132 |
+
"metadata": {
|
133 |
+
"id": "QSQMFfWKbsqT"
|
134 |
+
},
|
135 |
+
"outputs": [],
|
136 |
+
"source": [
|
137 |
+
"from IPython.display import display, Markdown\n",
|
138 |
+
"\n",
|
139 |
+
"def get_response(messages: str, model: str = \"gpt-3.5-turbo\") -> str:\n",
|
140 |
+
" return client.chat.completions.create(\n",
|
141 |
+
" model=model,\n",
|
142 |
+
" messages=messages\n",
|
143 |
+
" )\n",
|
144 |
+
"\n",
|
145 |
+
"def wrap_prompt(message: str, role: str) -> dict:\n",
|
146 |
+
" return {\"role\": role, \"content\": message}\n",
|
147 |
+
"\n",
|
148 |
+
"def m_print(message: str) -> str:\n",
|
149 |
+
" display(Markdown(message.choices[0].message.content))"
|
150 |
+
]
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"cell_type": "code",
|
154 |
+
"execution_count": 5,
|
155 |
+
"metadata": {
|
156 |
+
"colab": {
|
157 |
+
"base_uri": "https://localhost:8080/",
|
158 |
+
"height": 348
|
159 |
+
},
|
160 |
+
"id": "7aEd_p1sbsqT",
|
161 |
+
"outputId": "d32cf1ff-d4aa-48a9-ebf5-f670c1750110"
|
162 |
+
},
|
163 |
+
"outputs": [
|
164 |
+
{
|
165 |
+
"data": {
|
166 |
+
"text/markdown": [
|
167 |
+
"Sure! Here's a Python function that calculates the Nth Fibonacci number using recursion:\n",
|
168 |
+
"\n",
|
169 |
+
"```python\n",
|
170 |
+
"def fibonacci(n):\n",
|
171 |
+
" if n <= 0:\n",
|
172 |
+
" return \"Invalid input. Please enter a positive integer.\"\n",
|
173 |
+
" elif n == 1:\n",
|
174 |
+
" return 0\n",
|
175 |
+
" elif n == 2:\n",
|
176 |
+
" return 1\n",
|
177 |
+
" else:\n",
|
178 |
+
" return fibonacci(n-1) + fibonacci(n-2)\n",
|
179 |
+
"\n",
|
180 |
+
"n = 10\n",
|
181 |
+
"result = fibonacci(n)\n",
|
182 |
+
"print(f\"The {n}th Fibonacci number is: {result}\")\n",
|
183 |
+
"```\n",
|
184 |
+
"\n",
|
185 |
+
"You can replace the value of `n` with any positive integer to get the corresponding Fibonacci number."
|
186 |
+
],
|
187 |
+
"text/plain": [
|
188 |
+
"<IPython.core.display.Markdown object>"
|
189 |
+
]
|
190 |
+
},
|
191 |
+
"metadata": {},
|
192 |
+
"output_type": "display_data"
|
193 |
+
}
|
194 |
+
],
|
195 |
+
"source": [
|
196 |
+
"system_prompt = wrap_prompt(\"You are a Python Programmer.\", \"system\")\n",
|
197 |
+
"user_prompt = wrap_prompt(\"Can you write me a function in Python that calculates the Nth Fibonacci number?\", \"user\")\n",
|
198 |
+
"\n",
|
199 |
+
"openai_response = get_response([system_prompt, user_prompt])\n",
|
200 |
+
"m_print(openai_response)"
|
201 |
+
]
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"cell_type": "code",
|
205 |
+
"execution_count": 6,
|
206 |
+
"metadata": {
|
207 |
+
"colab": {
|
208 |
+
"base_uri": "https://localhost:8080/"
|
209 |
+
},
|
210 |
+
"id": "N7EproZ5ztKt",
|
211 |
+
"outputId": "a7ca3b15-87cf-4c27-8173-6534d9f70421"
|
212 |
+
},
|
213 |
+
"outputs": [
|
214 |
+
{
|
215 |
+
"name": "stdout",
|
216 |
+
"output_type": "stream",
|
217 |
+
"text": [
|
218 |
+
"ChatCompletion(id='chatcmpl-9D4cOPbhi0rrPQGQC1bDUrDBUNTGs', choices=[Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content='Sure! Here\\'s a Python function that calculates the Nth Fibonacci number using recursion:\\n\\n```python\\ndef fibonacci(n):\\n if n <= 0:\\n return \"Invalid input. Please enter a positive integer.\"\\n elif n == 1:\\n return 0\\n elif n == 2:\\n return 1\\n else:\\n return fibonacci(n-1) + fibonacci(n-2)\\n\\nn = 10\\nresult = fibonacci(n)\\nprint(f\"The {n}th Fibonacci number is: {result}\")\\n```\\n\\nYou can replace the value of `n` with any positive integer to get the corresponding Fibonacci number.', role='assistant', function_call=None, tool_calls=None))], created=1712903044, model='gpt-3.5-turbo-0125', object='chat.completion', system_fingerprint='fp_b28b39ffa8', usage=CompletionUsage(completion_tokens=129, prompt_tokens=33, total_tokens=162))\n"
|
219 |
+
]
|
220 |
+
}
|
221 |
+
],
|
222 |
+
"source": [
|
223 |
+
"print(openai_response)"
|
224 |
+
]
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"cell_type": "markdown",
|
228 |
+
"metadata": {
|
229 |
+
"id": "YdhHoeo5zxbl"
|
230 |
+
},
|
231 |
+
"source": [
|
232 |
+
"You can add the `assistant` role to send messages as-if they're from the model itself - which can help us do \"few-shot\" prompt engineering!\n",
|
233 |
+
"\n",
|
234 |
+
"That's where we show the LLM a few examples of the output we'd like to see to help guide the model to our desired outputs!\n",
|
235 |
+
"\n",
|
236 |
+
"Let's see it in action!"
|
237 |
+
]
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"cell_type": "code",
|
241 |
+
"execution_count": 7,
|
242 |
+
"metadata": {
|
243 |
+
"id": "DLCT0o5i0AEw"
|
244 |
+
},
|
245 |
+
"outputs": [],
|
246 |
+
"source": [
|
247 |
+
"prompt_list = [\n",
|
248 |
+
" wrap_prompt(\"You are an expert food critic, and also a pirate.\", \"system\"),\n",
|
249 |
+
" wrap_prompt(\"Hi, are apples any good?\", \"user\"),\n",
|
250 |
+
" wrap_prompt(\"Ahoy matey. Apples be the finest of the edible treasures.\", \"assistant\"),\n",
|
251 |
+
" wrap_prompt(\"Hello there, is the combination of cheese and plums a good combination?\", \"user\"),\n",
|
252 |
+
" wrap_prompt(\"Arrrrrr. That be a dish only land-lubbers could enjoy. If that grub be on my ship, I'd toss it overboard!\", \"assistant\")\n",
|
253 |
+
"]"
|
254 |
+
]
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"cell_type": "markdown",
|
258 |
+
"metadata": {
|
259 |
+
"id": "i1k3xWIP0x5u"
|
260 |
+
},
|
261 |
+
"source": [
|
262 |
+
"Now we can append our *actual* prompt to the list!"
|
263 |
+
]
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"cell_type": "code",
|
267 |
+
"execution_count": 8,
|
268 |
+
"metadata": {
|
269 |
+
"colab": {
|
270 |
+
"base_uri": "https://localhost:8080/",
|
271 |
+
"height": 64
|
272 |
+
},
|
273 |
+
"id": "CFeNREBW03G_",
|
274 |
+
"outputId": "4ff66e0f-b38d-486d-d125-dcb8b876b150"
|
275 |
+
},
|
276 |
+
"outputs": [
|
277 |
+
{
|
278 |
+
"data": {
|
279 |
+
"text/markdown": [
|
280 |
+
"Aye, pears be a fine addition to a salad, adding a sweet and juicy element to balance the savory and crunchy components. You won't be walkin' the plank for addin' them to your salad, that be for sure!"
|
281 |
+
],
|
282 |
+
"text/plain": [
|
283 |
+
"<IPython.core.display.Markdown object>"
|
284 |
+
]
|
285 |
+
},
|
286 |
+
"metadata": {},
|
287 |
+
"output_type": "display_data"
|
288 |
+
}
|
289 |
+
],
|
290 |
+
"source": [
|
291 |
+
"prompt_list.append(wrap_prompt(\"Are pears a good choice for a salad?\", \"user\"))\n",
|
292 |
+
"\n",
|
293 |
+
"openai_response = get_response(prompt_list)\n",
|
294 |
+
"m_print(openai_response)"
|
295 |
+
]
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"cell_type": "markdown",
|
299 |
+
"metadata": {
|
300 |
+
"id": "ZJ2IuNHT1E8r"
|
301 |
+
},
|
302 |
+
"source": [
|
303 |
+
"Feel free to send some prompts and try out different things!\n",
|
304 |
+
"\n",
|
305 |
+
"Let us know if you find anything interesting!"
|
306 |
+
]
|
307 |
+
}
|
308 |
+
],
|
309 |
+
"metadata": {
|
310 |
+
"colab": {
|
311 |
+
"provenance": []
|
312 |
+
},
|
313 |
+
"kernelspec": {
|
314 |
+
"display_name": "open_ai",
|
315 |
+
"language": "python",
|
316 |
+
"name": "python3"
|
317 |
+
},
|
318 |
+
"language_info": {
|
319 |
+
"codemirror_mode": {
|
320 |
+
"name": "ipython",
|
321 |
+
"version": 3
|
322 |
+
},
|
323 |
+
"file_extension": ".py",
|
324 |
+
"mimetype": "text/x-python",
|
325 |
+
"name": "python",
|
326 |
+
"nbconvert_exporter": "python",
|
327 |
+
"pygments_lexer": "ipython3",
|
328 |
+
"version": "3.11.8"
|
329 |
+
},
|
330 |
+
"orig_nbformat": 4
|
331 |
+
},
|
332 |
+
"nbformat": 4,
|
333 |
+
"nbformat_minor": 0
|
334 |
+
}
|