ningrumdaud commited on
Commit
62a0a9c
·
verified ·
1 Parent(s): 2b4a211

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -94,7 +94,7 @@ class NounExtractor:
94
  # Choose a representative dependency if no clear subject is present
95
  return deps_in_phrase.pop() if deps_in_phrase else 'unknown'
96
 
97
- def extract(self, sentence, action_verb):
98
  """
99
  Extracts and returns noun phrases with their detailed dependency tags from the sentence.
100
  """
@@ -102,10 +102,10 @@ class NounExtractor:
102
  noun_phrases = self.get_noun_phrases(doc)
103
  result_dict = {phrase: dep for phrase, dep in noun_phrases}
104
 
105
- # Check for the presence of any actionable verbs in the sentence
106
- found_verbs = [v for v in action_verb if v.lower() in sentence.lower()]
107
  if found_verbs:
108
- # Adjust dependency labels for noun phrases based on the presence of an actionable verb.
109
  for phrase, dep in list(result_dict.items()): # Work on a copy of items to safely modify the dict
110
  if dep == 'ROOT':
111
  result_dict[phrase] = 'dobj'
@@ -173,12 +173,12 @@ extractor = NounExtractor(nlp=nlp)
173
 
174
  # Example of how to use this function
175
  words_list = ["so", "because", "increase", "contribute", "due to"]
176
- action_verb = ['affect', 'influence', 'increase', 'against']
177
 
178
  # Define the callback function for the GUI
179
  def CogMapAnalysis(text):
180
  if contains_words_or_phrases(words_list, text):
181
- result = extractor.extract(text, action_verb)
182
  formatted_result = format_results(result)
183
  plot = visualize_cognitive_map(formatted_result)
184
  return formatted_result, plot
 
94
  # Choose a representative dependency if no clear subject is present
95
  return deps_in_phrase.pop() if deps_in_phrase else 'unknown'
96
 
97
+ def extract(self, sentence, causative_verb):
98
  """
99
  Extracts and returns noun phrases with their detailed dependency tags from the sentence.
100
  """
 
102
  noun_phrases = self.get_noun_phrases(doc)
103
  result_dict = {phrase: dep for phrase, dep in noun_phrases}
104
 
105
+ # Check for the presence of causative verbs like 'cause', in the sentence
106
+ found_verbs = [v for v in causative_verb if v.lower() in sentence.lower()]
107
  if found_verbs:
108
+ # Adjust dependency labels for noun phrases based on the presence of an causative verb.
109
  for phrase, dep in list(result_dict.items()): # Work on a copy of items to safely modify the dict
110
  if dep == 'ROOT':
111
  result_dict[phrase] = 'dobj'
 
173
 
174
  # Example of how to use this function
175
  words_list = ["so", "because", "increase", "contribute", "due to"]
176
+ causative_verb = ['affect', 'influence', 'increase', 'against']
177
 
178
  # Define the callback function for the GUI
179
  def CogMapAnalysis(text):
180
  if contains_words_or_phrases(words_list, text):
181
+ result = extractor.extract(text, causative_verb)
182
  formatted_result = format_results(result)
183
  plot = visualize_cognitive_map(formatted_result)
184
  return formatted_result, plot