Spaces:
Build error
Build error
import streamlit as st | |
from PIL import Image | |
import face_recognition | |
import cv2 | |
import numpy as np | |
import os | |
import sqlite3 | |
from datetime import datetime | |
import requests | |
st.title("Face Recognition based attendance system") | |
# Load images for face recognition | |
Images = [] | |
classnames = [] | |
directory = "photos" | |
myList = os.listdir(directory) | |
current_datetime = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
st.write("Photographs found in folder : ") | |
for cls in myList: | |
if os.path.splitext(cls)[1] in [".jpg", ".jpeg"]: | |
img_path = os.path.join(directory, cls) | |
curImg = cv2.imread(img_path) | |
Images.append(curImg) | |
st.write(os.path.splitext(cls)[0]) | |
classnames.append(os.path.splitext(cls)[0]) | |
# Load images for face recognition | |
encodeListknown = [face_recognition.face_encodings(img)[0] for img in Images] | |
# camera to take photo of user in question | |
file_name = st.camera_input("Upload image") | |
def add_attendance(names): | |
url = "https://smart-attendance-system1.glitch.me/adduserdata1" # Change this URL to your Glitch endpoint | |
success_count = 0 | |
print(len(names)) | |
data = {'name': name} | |
response = requests.get(url, data=data) | |
if response.status_code == 200: | |
success_count += 1 | |
else: | |
st.warning(f"Failed to mark attendance for {name}") | |
if success_count == len(names): | |
st.success("Attendance marked for all recognized faces. Have a good day!") | |
else: | |
st.success("Attendance marked for some faces. Check warnings for details.") | |
if file_name is not None: | |
col1, col2 = st.columns(2) | |
test_image = Image.open(file_name) | |
image = np.asarray(test_image) | |
imgS = cv2.resize(image, (0, 0), None, 0.25, 0.25) | |
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB) | |
facesCurFrame = face_recognition.face_locations(imgS) | |
encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame) | |
# List to store recognized names for all faces in the image | |
recognized_names = [] | |
# Checking if faces are detected | |
if len(encodesCurFrame) > 0: | |
for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame): | |
# Assuming that encodeListknown is defined and populated in your code | |
matches = face_recognition.compare_faces(encodeListknown, encodeFace) | |
faceDis = face_recognition.face_distance(encodeListknown, encodeFace) | |
# Initialize name as Unknown | |
name = "Unknown" | |
# Check if there's a match with known faces | |
if True in matches: | |
matchIndex = np.argmin(faceDis) | |
name = classnames[matchIndex].upper() | |
# Append recognized name to the list | |
recognized_names.append(name) | |
# Draw rectangle around the face | |
y1, x2, y2, x1 = faceLoc | |
y1, x2, y2, x1 = (y1 * 4), (x2 * 4), (y2 * 4) ,(x1 * 4) | |
image = image.copy() | |
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) | |
cv2.putText(image, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2) | |
# Store attendance in SQLite database | |
print(recognized_names) | |
# Display the image with recognized faces | |
st.image(image, use_column_width=True, output_format="PNG") | |
st.write("Length : {recognizes_names}") | |
# Display recognized names | |
st.write("Recognized Names:") | |
for i, name in enumerate(recognized_names): | |
st.write(f"Face {i+1}: {name}") | |
add_attendance(name) | |
else: | |
st.warning("No faces detected in the image. Face recognition failed.") | |