File size: 4,463 Bytes
355b7d6
 
 
 
 
ab382f0
355b7d6
ab382f0
 
 
a1b2c23
355b7d6
8f997e4
57ab467
ab382f0
 
 
207731c
 
 
 
3b4a08d
355b7d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab382f0
 
355b7d6
2ae46d7
f9d021c
38fae63
51f57d5
f9d021c
51f57d5
 
f9d021c
38fae63
 
 
 
 
 
2ae46d7
 
355b7d6
2ae46d7
38fae63
2ae46d7
 
 
 
38fae63
 
 
 
2ae46d7
355b7d6
 
2ae46d7
 
 
 
 
 
38fae63
 
 
2ae46d7
38fae63
 
2ae46d7
 
38fae63
 
2ae46d7
 
 
38fae63
5a07c64
3b4a08d
2ae46d7
 
355b7d6
 
 
 
 
 
 
 
 
 
8f997e4
a1b2c23
 
355b7d6
 
 
80d5294
 
 
 
355b7d6
 
 
80d5294
 
00ab235
21937b0
 
80d5294
 
 
 
bcd2a0f
355b7d6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

import json
import subprocess
from threading import Thread

import torch
import spaces
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer

#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
CHAT_TEMPLATE = "َAuto"
MODEL_NAME = MODEL_ID.split("/")[-1]
CONTEXT_LENGTH = 16000


COLOR = "black"  
EMOJI = "🤖"  
DESCRIPTION = f"This is  {MODEL_NAME} model designed for testing thinking for general AI tasks."  # Descripción predeterminada

latex_delimiters_set = [{
        "left": "\\(",
        "right": "\\)",
        "display": False 
    }, {
        "left": "\\begin{equation}",
        "right": "\\end{equation}",
        "display": True 
    }, {
        "left": "\\begin{align}",
        "right": "\\end{align}",
        "display": True
    }, {
        "left": "\\begin{alignat}",
        "right": "\\end{alignat}",
        "display": True
    }, {
        "left": "\\begin{gather}",
        "right": "\\end{gather}",
        "display": True
    }, {
        "left": "\\begin{CD}",
        "right": "\\end{CD}",
        "display": True
    }, {
        "left": "\\[",
        "right": "\\]",
        "display": True
    }]


@spaces.GPU()
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
    
    stop_tokens = ["<|endoftext|>", "<|im_end|>", "|im_end|"]
    instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n'
    for user, assistant in history:
        instruction += f'<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n'
    instruction += f'<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n'
    
    print("Formatted Instruction:", instruction)
    
   
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    
    
    enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True)
    input_ids, attention_mask = enc.input_ids, enc.attention_mask

    
    if input_ids.shape[1] > CONTEXT_LENGTH:
        input_ids = input_ids[:, -CONTEXT_LENGTH:]
        attention_mask = attention_mask[:, -CONTEXT_LENGTH:]

    
    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

    # Define the generation parameters
    generate_kwargs = dict(
        input_ids=input_ids.to(device),
        attention_mask=attention_mask.to(device),
        streamer=streamer,
        do_sample=True,
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_k=top_k,
        repetition_penalty=repetition_penalty,
        top_p=top_p,
        pad_token_id=tokenizer.pad_token_id,  # Explicitly set pad_token_id
        eos_token_id=tokenizer.eos_token_id,  # Explicitly set eos_token_id
    )

    # Start the generation in a separate thread
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    # Stream the output token by token
    outputs = []
    for new_token in streamer:
        outputs.append(new_token)
        if any(stop_token in new_token for stop_token in stop_tokens):
            break
        yield "".join(outputs)


# Load model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    device_map="auto",
    #quantization_config=quantization_config,
    #attn_implementation="flash_attention_2",
    
)

# Create Gradio interface
gr.ChatInterface(
    predict,
    title=EMOJI + " " + MODEL_NAME,
    description=DESCRIPTION,
    

     
    additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False),
    additional_inputs=[
        gr.Textbox("You are a useful assistant. first recognize user request and then reply carfuly and thinking", label="System prompt"),
        gr.Slider(0, 1, 0.6, label="Temperature"),
        gr.Slider(0, 32000, 10000, label="Max new tokens"),
        gr.Slider(1, 80, 40, label="Top K sampling"),
        gr.Slider(0, 2, 1.1, label="Repetition penalty"),
        gr.Slider(0, 1, 0.95, label="Top P sampling"),
    ],
    #theme=gr.themes.Soft(primary_hue=COLOR),
).queue().launch()