File size: 24,480 Bytes
8a1b8f9 541f198 2aba93c 541f198 2aba93c 541f198 2aba93c 541f198 542ca08 2aba93c e17af04 509d7be 2aba93c 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 d6d3990 541f198 2aba93c 541f198 2aba93c 541f198 8a1b8f9 541f198 8a1b8f9 541f198 2aba93c 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 542ca08 541f198 8a1b8f9 d6d3990 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 d5d6c2a 2aba93c 509d7be d0b3c0b 541f198 2aba93c 541f198 8a1b8f9 27f3688 541f198 8a1b8f9 541f198 d6d3990 541f198 31e843b 43b32f0 31e843b 8a1b8f9 11ef697 8a1b8f9 541f198 d6d3990 d5d6c2a 8a1b8f9 11ef697 d6d3990 8a1b8f9 31e843b 541f198 333e45b 23c0323 50d7cc2 8a1b8f9 27f3688 8a1b8f9 2e68677 8a1b8f9 d77d251 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 8a1b8f9 541f198 d6d3990 8a1b8f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 |
# This Gradio demo code is from https://github.com/cvlab-kaist/locotrack/blob/main/demo/demo.py
# We updated it to work with CoTracker3 models. We thank authors of LocoTrack
# for such an amazing Gradio demo.
import os
import sys
import uuid
import gradio as gr
import mediapy
import numpy as np
import cv2
import matplotlib
import torch
import colorsys
import random
from typing import List, Optional, Sequence, Tuple
import spaces
import numpy as np
from visualizer import Visualizer
from predictor import CoTrackerOnlinePredictor
# Generate random colormaps for visualizing different points.
def get_colors(num_colors: int) -> List[Tuple[int, int, int]]:
"""Gets colormap for points."""
colors = []
for i in np.arange(0.0, 360.0, 360.0 / num_colors):
hue = i / 360.0
lightness = (50 + np.random.rand() * 10) / 100.0
saturation = (90 + np.random.rand() * 10) / 100.0
color = colorsys.hls_to_rgb(hue, lightness, saturation)
colors.append((int(color[0] * 255), int(color[1] * 255), int(color[2] * 255)))
random.shuffle(colors)
return colors
def read_video_cv2(video_path):
cap = cv2.VideoCapture(video_path)
frames = []
# Get FPS from video metadata
fps = cap.get(cv2.CAP_PROP_FPS)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Convert BGR to RGB
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame)
cap.release()
video_arr = np.array(frames)
return video_arr, fps
def get_points_on_a_grid(
size: int,
extent: Tuple[float, ...],
center: Optional[Tuple[float, ...]] = None,
device: Optional[torch.device] = torch.device("cpu"),
):
r"""Get a grid of points covering a rectangular region
`get_points_on_a_grid(size, extent)` generates a :attr:`size` by
:attr:`size` grid fo points distributed to cover a rectangular area
specified by `extent`.
The `extent` is a pair of integer :math:`(H,W)` specifying the height
and width of the rectangle.
Optionally, the :attr:`center` can be specified as a pair :math:`(c_y,c_x)`
specifying the vertical and horizontal center coordinates. The center
defaults to the middle of the extent.
Points are distributed uniformly within the rectangle leaving a margin
:math:`m=W/64` from the border.
It returns a :math:`(1, \text{size} \times \text{size}, 2)` tensor of
points :math:`P_{ij}=(x_i, y_i)` where
.. math::
P_{ij} = \left(
c_x + m -\frac{W}{2} + \frac{W - 2m}{\text{size} - 1}\, j,~
c_y + m -\frac{H}{2} + \frac{H - 2m}{\text{size} - 1}\, i
\right)
Points are returned in row-major order.
Args:
size (int): grid size.
extent (tuple): height and with of the grid extent.
center (tuple, optional): grid center.
device (str, optional): Defaults to `"cpu"`.
Returns:
Tensor: grid.
"""
if size == 1:
return torch.tensor([extent[1] / 2, extent[0] / 2], device=device)[None, None]
if center is None:
center = [extent[0] / 2, extent[1] / 2]
margin = extent[1] / 64
range_y = (margin - extent[0] / 2 + center[0], extent[0] / 2 + center[0] - margin)
range_x = (margin - extent[1] / 2 + center[1], extent[1] / 2 + center[1] - margin)
grid_y, grid_x = torch.meshgrid(
torch.linspace(*range_y, size, device=device),
torch.linspace(*range_x, size, device=device),
indexing="ij",
)
return torch.stack([grid_x, grid_y], dim=-1).reshape(1, -1, 2)
def paint_point_track(
frames: np.ndarray,
point_tracks: np.ndarray,
visibles: np.ndarray,
colormap: Optional[List[Tuple[int, int, int]]] = None,
) -> np.ndarray:
"""Converts a sequence of points to color code video.
Args:
frames: [num_frames, height, width, 3], np.uint8, [0, 255]
point_tracks: [num_points, num_frames, 2], np.float32, [0, width / height]
visibles: [num_points, num_frames], bool
colormap: colormap for points, each point has a different RGB color.
Returns:
video: [num_frames, height, width, 3], np.uint8, [0, 255]
"""
num_points, num_frames = point_tracks.shape[0:2]
if colormap is None:
colormap = get_colors(num_colors=num_points)
height, width = frames.shape[1:3]
dot_size_as_fraction_of_min_edge = 0.015
radius = int(round(min(height, width) * dot_size_as_fraction_of_min_edge))
diam = radius * 2 + 1
quadratic_y = np.square(np.arange(diam)[:, np.newaxis] - radius - 1)
quadratic_x = np.square(np.arange(diam)[np.newaxis, :] - radius - 1)
icon = (quadratic_y + quadratic_x) - (radius**2) / 2.0
sharpness = 0.15
icon = np.clip(icon / (radius * 2 * sharpness), 0, 1)
icon = 1 - icon[:, :, np.newaxis]
icon1 = np.pad(icon, [(0, 1), (0, 1), (0, 0)])
icon2 = np.pad(icon, [(1, 0), (0, 1), (0, 0)])
icon3 = np.pad(icon, [(0, 1), (1, 0), (0, 0)])
icon4 = np.pad(icon, [(1, 0), (1, 0), (0, 0)])
video = frames.copy()
for t in range(num_frames):
# Pad so that points that extend outside the image frame don't crash us
image = np.pad(
video[t],
[
(radius + 1, radius + 1),
(radius + 1, radius + 1),
(0, 0),
],
)
for i in range(num_points):
# The icon is centered at the center of a pixel, but the input coordinates
# are raster coordinates. Therefore, to render a point at (1,1) (which
# lies on the corner between four pixels), we need 1/4 of the icon placed
# centered on the 0'th row, 0'th column, etc. We need to subtract
# 0.5 to make the fractional position come out right.
x, y = point_tracks[i, t, :] + 0.5
x = min(max(x, 0.0), width)
y = min(max(y, 0.0), height)
if visibles[i, t]:
x1, y1 = np.floor(x).astype(np.int32), np.floor(y).astype(np.int32)
x2, y2 = x1 + 1, y1 + 1
# bilinear interpolation
patch = (
icon1 * (x2 - x) * (y2 - y)
+ icon2 * (x2 - x) * (y - y1)
+ icon3 * (x - x1) * (y2 - y)
+ icon4 * (x - x1) * (y - y1)
)
x_ub = x1 + 2 * radius + 2
y_ub = y1 + 2 * radius + 2
image[y1:y_ub, x1:x_ub, :] = (1 - patch) * image[
y1:y_ub, x1:x_ub, :
] + patch * np.array(colormap[i])[np.newaxis, np.newaxis, :]
# Remove the pad
video[t] = image[radius + 1 : -radius - 1, radius + 1 : -radius - 1].astype(
np.uint8
)
return video
PREVIEW_WIDTH = 768 # Width of the preview video
VIDEO_INPUT_RESO = (384, 512) # Resolution of the input video
POINT_SIZE = 4 # Size of the query point in the preview video
FRAME_LIMIT = 600 # Limit the number of frames to process
def get_point(
frame_num,
video_queried_preview,
query_points,
query_points_color,
query_count,
evt: gr.SelectData,
):
print(f"You selected {(evt.index[0], evt.index[1], frame_num)}")
current_frame = video_queried_preview[int(frame_num)]
# Get the mouse click
query_points[int(frame_num)].append((evt.index[0], evt.index[1], frame_num))
# Choose the color for the point from matplotlib colormap
color = matplotlib.colormaps.get_cmap("gist_rainbow")(query_count % 20 / 20)
color = (int(color[0] * 255), int(color[1] * 255), int(color[2] * 255))
# print(f"Color: {color}")
query_points_color[int(frame_num)].append(color)
# Draw the point on the frame
x, y = evt.index
current_frame_draw = cv2.circle(current_frame, (x, y), POINT_SIZE, color, -1)
# Update the frame
video_queried_preview[int(frame_num)] = current_frame_draw
# Update the query count
query_count += 1
return (
current_frame_draw, # Updated frame for preview
video_queried_preview, # Updated preview video
query_points, # Updated query points
query_points_color, # Updated query points color
query_count, # Updated query count
)
def undo_point(
frame_num,
video_preview,
video_queried_preview,
query_points,
query_points_color,
query_count,
):
if len(query_points[int(frame_num)]) == 0:
return (
video_queried_preview[int(frame_num)],
video_queried_preview,
query_points,
query_points_color,
query_count,
)
# Get the last point
query_points[int(frame_num)].pop(-1)
query_points_color[int(frame_num)].pop(-1)
# Redraw the frame
current_frame_draw = video_preview[int(frame_num)].copy()
for point, color in zip(
query_points[int(frame_num)], query_points_color[int(frame_num)]
):
x, y, _ = point
current_frame_draw = cv2.circle(
current_frame_draw, (x, y), POINT_SIZE, color, -1
)
# Update the query count
query_count -= 1
# Update the frame
video_queried_preview[int(frame_num)] = current_frame_draw
return (
current_frame_draw, # Updated frame for preview
video_queried_preview, # Updated preview video
query_points, # Updated query points
query_points_color, # Updated query points color
query_count, # Updated query count
)
def clear_frame_fn(
frame_num,
video_preview,
video_queried_preview,
query_points,
query_points_color,
query_count,
):
query_count -= len(query_points[int(frame_num)])
query_points[int(frame_num)] = []
query_points_color[int(frame_num)] = []
video_queried_preview[int(frame_num)] = video_preview[int(frame_num)].copy()
return (
video_preview[int(frame_num)], # Set the preview frame to the original frame
video_queried_preview,
query_points, # Cleared query points
query_points_color, # Cleared query points color
query_count, # New query count
)
def clear_all_fn(frame_num, video_preview):
return (
video_preview[int(frame_num)],
video_preview.copy(),
[[] for _ in range(len(video_preview))],
[[] for _ in range(len(video_preview))],
0,
)
def choose_frame(frame_num, video_preview_array):
return video_preview_array[int(frame_num)]
def preprocess_video_input(video_path):
import time
start_time = time.time()
# Read video and get FPS
video_arr, video_fps = read_video_cv2(video_path)
end_time = time.time()
print(f"Time taken to read video: {end_time - start_time} seconds")
# Apply frame limit
num_frames = video_arr.shape[0]
if num_frames > FRAME_LIMIT:
gr.Warning(
f"The video is too long. Only the first {FRAME_LIMIT} frames will be used.",
duration=5,
)
video_arr = video_arr[:FRAME_LIMIT]
num_frames = FRAME_LIMIT
start_time = time.time()
# Resize preview video while maintaining aspect ratio
h, w = video_arr.shape[1:3]
aspect_ratio = w / h
if w > PREVIEW_WIDTH:
new_w = PREVIEW_WIDTH
new_h = int(new_w / aspect_ratio)
preview_video = np.zeros((len(video_arr), new_h, new_w, 3), dtype=np.uint8)
for i in range(len(video_arr)):
preview_video[i] = cv2.resize(video_arr[i], (new_w, new_h), interpolation=cv2.INTER_LINEAR)
else:
preview_video = video_arr.copy()
# Resize input video for the model
input_video = np.zeros((len(video_arr), VIDEO_INPUT_RESO[0], VIDEO_INPUT_RESO[1], 3), dtype=np.uint8)
for i in range(len(video_arr)):
input_video[i] = cv2.resize(video_arr[i], (VIDEO_INPUT_RESO[1], VIDEO_INPUT_RESO[0]), interpolation=cv2.INTER_LINEAR)
end_time = time.time()
print(f"Time taken to resize videos: {end_time - start_time} seconds")
interactive = True
return (
video_arr, # Original video
preview_video, # Preview video at resized resolution
preview_video.copy(), # Copy for visualization
input_video, # Resized input video for model
video_fps,
gr.update(open=False),
preview_video[0],
gr.update(minimum=0, maximum=num_frames - 1, value=0, interactive=interactive),
[[] for _ in range(num_frames)],
[[] for _ in range(num_frames)],
[[] for _ in range(num_frames)],
0,
gr.update(interactive=interactive),
gr.update(interactive=interactive),
gr.update(interactive=interactive),
gr.update(interactive=True),
)
@spaces.GPU
def track(
video_preview,
video_input,
video_fps,
query_points,
query_points_color,
query_count,
):
tracking_mode = "selected"
if query_count == 0:
tracking_mode = "grid"
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float if device == "cuda" else torch.float
# Convert query points to tensor, normalize to input resolution
if tracking_mode != "grid":
query_points_tensor = []
for frame_points in query_points:
query_points_tensor.extend(frame_points)
query_points_tensor = torch.tensor(query_points_tensor).float()
query_points_tensor *= torch.tensor(
[VIDEO_INPUT_RESO[1], VIDEO_INPUT_RESO[0], 1]
) / torch.tensor([[video_preview.shape[2], video_preview.shape[1], 1]])
query_points_tensor = (
query_points_tensor[None].flip(-1).to(device, dtype)
) # xyt -> tyx
query_points_tensor = query_points_tensor[:, :, [0, 2, 1]] # tyx -> txy
video_input = torch.tensor(video_input).unsqueeze(0)
# model = torch.hub.load("facebookresearch/co-tracker", "cotracker3_online")
model = CoTrackerOnlinePredictor(checkpoint='./baseline_online.pth')
model = model.to(device)
video_input = video_input.permute(0, 1, 4, 2, 3)
if tracking_mode == "grid":
xy = get_points_on_a_grid(40, video_input.shape[3:], device=device)
queries = torch.cat([torch.zeros_like(xy[:, :, :1]), xy], dim=2).to(device) #
add_support_grid = False
cmap = matplotlib.colormaps.get_cmap("gist_rainbow")
query_points_color = [[]]
query_count = queries.shape[1]
for i in range(query_count):
# Choose the color for the point from matplotlib colormap
color = cmap(i / float(query_count))
color = (int(color[0] * 255), int(color[1] * 255), int(color[2] * 255))
query_points_color[0].append(color)
else:
queries = query_points_tensor
# xy = get_points_on_a_grid(15, video_input.shape[3:], device=device)
# queries__ = torch.cat([torch.zeros_like(xy[:, :, :1]), xy], dim=2).to(device) #
num_tracks = queries.shape[1]
# queries = torch.cat([queries,queries__],dim=1)
add_support_grid = True
model(
video_chunk=video_input[:, :1].to(device, dtype),
is_first_step=True,
grid_size=0,
queries=queries,
add_support_grid=add_support_grid,
iters=4
)
#
for ind in range(0, video_input.shape[1] - model.step, model.step):
pred_tracks, pred_visibility = model(
video_chunk=video_input[:, ind : ind + model.step * 2].to(device, dtype),
grid_size=0,
queries=queries,
add_support_grid=add_support_grid,
iters=4
) # B T N 2, B T N 1
tracks = (
(
pred_tracks
* torch.tensor([video_preview.shape[2], video_preview.shape[1]]).to(device)
/ torch.tensor([VIDEO_INPUT_RESO[1], VIDEO_INPUT_RESO[0]]).to(device)
)[0]
.permute(1, 0, 2)
.cpu()
.numpy()
)
pred_occ = torch.ones_like(pred_visibility[0]).permute(1, 0).cpu().numpy()
# make color array
colors = []
for frame_colors in query_points_color:
colors.extend(frame_colors)
colors = np.array(colors)
# pred_tracks = torch.cat([pred_tracks[:,:1],(pred_tracks[:,:-2] + pred_tracks[:,1:-1] + pred_tracks[:,2:])/ 3, pred_tracks[:,-1:]],dim=1)
# torch.cat([pred_tracks[:,:1],pred_tracks[:,1:]],dim=1)
pred_tracks = (
pred_tracks
* torch.tensor([video_preview.shape[2], video_preview.shape[1]]).to(device)
/ torch.tensor([VIDEO_INPUT_RESO[1], VIDEO_INPUT_RESO[0]]).to(device)
)
vis = Visualizer(
save_dir="./saved_videos", pad_value=0, linewidth=2, tracks_leave_trace=0
)
# segm_mask = torch.zeros(queries.shape[1])
# segm_mask[:num_tracks] = 1
# print('segm_mask',segm_mask.shape, segm_mask)
# segm_mask=segm_mask,
painted_video = (
vis.visualize(
torch.tensor(video_preview)
.permute(0, 3, 1, 2)[None]
.to(pred_tracks.device),
pred_tracks.round(),
pred_visibility,
save_video=False,
)[0]
.permute(0, 2, 3, 1)
.cpu()
.numpy()
)
# painted_video = paint_point_track(video_preview,tracks,pred_occ,colors)
# save video
video_file_name = uuid.uuid4().hex + ".mp4"
video_path = os.path.join(os.path.dirname(__file__), "tmp")
video_file_path = os.path.join(video_path, video_file_name)
os.makedirs(video_path, exist_ok=True)
mediapy.write_video(video_file_path, painted_video, fps=video_fps)
return video_file_path
with gr.Blocks() as demo:
video = gr.State()
video_queried_preview = gr.State()
video_preview = gr.State()
video_input = gr.State()
video_fps = gr.State(24)
query_points = gr.State([])
query_points_color = gr.State([])
is_tracked_query = gr.State([])
query_count = gr.State(0)
gr.Markdown(
"# 🎨 CoTracker3: Simpler and Better Point Tracking by Pseudo-Labelling Real Videos"
)
gr.Markdown(
"<div style='text-align: left;'> \
<p>Welcome to <a href='https://cotracker3.github.io/' target='_blank'>CoTracker</a>! This space demonstrates point (pixel) tracking in videos. \
The model tracks points on a grid or points selected by you. </p> \
<p> To get started, simply upload your <b>.mp4</b> video or click on one of the example videos to load them. The shorter the video, the faster the processing. We recommend submitting short videos of length <b>2-7 seconds</b>.</p> \
<p> After you uploaded a video, please click \"Submit\" and then click \"Track\" for grid tracking or specify points you want to track before clicking. Enjoy the results! </p>\
<p style='text-align: left'>For more details, check out our <a href='https://github.com/facebookresearch/co-tracker' target='_blank'>GitHub Repo</a> ⭐. We thank the authors of LocoTrack for their interactive demo.</p> \
</div>"
)
gr.Markdown(
"## First step: upload your video or select an example video, and click submit."
)
with gr.Row():
with gr.Accordion("Your video input", open=True) as video_in_drawer:
video_in = gr.Video(label="Video Input", format="mp4")
submit = gr.Button("Submit", scale=0)
import os
apple = os.path.join(os.path.dirname(__file__), "videos", "apple.mp4")
bear = os.path.join(os.path.dirname(__file__), "videos", "bear.mp4")
paragliding_launch = os.path.join(
os.path.dirname(__file__), "videos", "paragliding-launch.mp4"
)
paragliding = os.path.join(
os.path.dirname(__file__), "videos", "paragliding.mp4"
)
cat = os.path.join(os.path.dirname(__file__), "videos", "cat.mp4")
pillow = os.path.join(os.path.dirname(__file__), "videos", "pillow.mp4")
teddy = os.path.join(os.path.dirname(__file__), "videos", "teddy.mp4")
backpack = os.path.join(os.path.dirname(__file__), "videos", "backpack.mp4")
gr.Examples(
examples=[
bear,
apple,
paragliding,
paragliding_launch,
cat,
pillow,
teddy,
backpack,
],
inputs=[video_in],
)
gr.Markdown(
'## Second step: Simply click "Track" to track a grid of points or select query points on the video before clicking'
)
with gr.Row():
with gr.Column():
with gr.Row():
query_frames = gr.Slider(
minimum=0,
maximum=100,
value=0,
step=1,
label="Choose Frame",
interactive=False,
)
with gr.Row():
undo = gr.Button("Undo", interactive=False)
clear_frame = gr.Button("Clear Frame", interactive=False)
clear_all = gr.Button("Clear All", interactive=False)
with gr.Row():
current_frame = gr.Image(
label="Click to add query points", type="numpy", interactive=False
)
with gr.Row():
track_button = gr.Button("Track", interactive=False)
with gr.Column():
output_video = gr.Video(
label="Output Video",
interactive=False,
autoplay=True,
loop=True,
)
submit.click(
fn=preprocess_video_input,
inputs=[video_in],
outputs=[
video,
video_preview,
video_queried_preview,
video_input,
video_fps,
video_in_drawer,
current_frame,
query_frames,
query_points,
query_points_color,
is_tracked_query,
query_count,
undo,
clear_frame,
clear_all,
track_button,
],
queue=False,
)
query_frames.change(
fn=choose_frame,
inputs=[query_frames, video_queried_preview],
outputs=[
current_frame,
],
queue=False,
)
current_frame.select(
fn=get_point,
inputs=[
query_frames,
video_queried_preview,
query_points,
query_points_color,
query_count,
],
outputs=[
current_frame,
video_queried_preview,
query_points,
query_points_color,
query_count,
],
queue=False,
)
undo.click(
fn=undo_point,
inputs=[
query_frames,
video_preview,
video_queried_preview,
query_points,
query_points_color,
query_count,
],
outputs=[
current_frame,
video_queried_preview,
query_points,
query_points_color,
query_count,
],
queue=False,
)
clear_frame.click(
fn=clear_frame_fn,
inputs=[
query_frames,
video_preview,
video_queried_preview,
query_points,
query_points_color,
query_count,
],
outputs=[
current_frame,
video_queried_preview,
query_points,
query_points_color,
query_count,
],
queue=False,
)
clear_all.click(
fn=clear_all_fn,
inputs=[
query_frames,
video_preview,
],
outputs=[
current_frame,
video_queried_preview,
query_points,
query_points_color,
query_count,
],
queue=False,
)
track_button.click(
fn=track,
inputs=[
video_preview,
video_input,
video_fps,
query_points,
query_points_color,
query_count,
],
outputs=[
output_video,
],
queue=True,
)
demo.launch(show_api=False, show_error=True, debug=False, share=False)
|