Spaces:
Sleeping
Sleeping
refactored app.py
Browse files
app.py
CHANGED
@@ -1,119 +1,60 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
|
|
3 |
|
4 |
playground = gr.Blocks()
|
5 |
|
6 |
-
|
7 |
-
def review_training_choices(choice):
|
8 |
-
print(choice)
|
9 |
-
if choice == "Use Pipeline":
|
10 |
-
return gr.Row(visible=True)
|
11 |
-
else:
|
12 |
-
return gr.Row(visible=False)
|
13 |
-
|
14 |
-
|
15 |
-
def show_optional_fields(task):
|
16 |
-
if task == "question-answering":
|
17 |
-
return gr.TextArea(visible=True)
|
18 |
-
return gr.TextArea(visible=False)
|
19 |
-
|
20 |
-
|
21 |
-
def test_pipeline(task, model=None, prompt=None, context=None):
|
22 |
-
if model:
|
23 |
-
test = pipeline(task, model=model)
|
24 |
-
else:
|
25 |
-
if task == "ner":
|
26 |
-
test = pipeline(task, grouped_entities=True)
|
27 |
-
else:
|
28 |
-
test = pipeline(task)
|
29 |
-
if task == "question-answering":
|
30 |
-
if not context:
|
31 |
-
return "Context is required"
|
32 |
-
else:
|
33 |
-
result = test(question=prompt, context=context)
|
34 |
-
else:
|
35 |
-
result = test(prompt)
|
36 |
-
match task:
|
37 |
-
case "text-generation":
|
38 |
-
return gr.TextArea(result[0]["generated_text"])
|
39 |
-
case "fill-mask":
|
40 |
-
return gr.TextArea(result[0]["sequence"])
|
41 |
-
case "summarization":
|
42 |
-
return gr.TextArea(result[0]["summary_text"])
|
43 |
-
case "ner":
|
44 |
-
ner_result = "\n".join(
|
45 |
-
f"{k}={v}" for item in result for k, v in item.items() if k not in ["start", "end", "index"])
|
46 |
-
return gr.TextArea(ner_result.rstrip("\n"))
|
47 |
-
|
48 |
-
case "question-answering":
|
49 |
-
return gr.TextArea(result)
|
50 |
-
|
51 |
-
|
52 |
with playground:
|
53 |
-
|
54 |
-
Try your ideas here. Select from Text, Image or Audio
|
55 |
-
""")
|
56 |
with gr.Tabs():
|
57 |
with gr.TabItem("Text"):
|
58 |
-
|
59 |
-
with gr.Column(scale=4):
|
60 |
-
radio = gr.Radio(
|
61 |
-
["Use Pipeline", "Fine Tune"],
|
62 |
-
label="Select Use Pipeline to try out HF models or Fine Tune to test it on your own datasets",
|
63 |
-
value="Use Pipeline",
|
64 |
-
interactive=True,
|
65 |
-
)
|
66 |
-
with gr.Column(scale=1):
|
67 |
-
test_pipeline_button = gr.Button(
|
68 |
-
value="Test", variant="primary", size="sm")
|
69 |
with gr.Row(visible=True) as use_pipeline:
|
70 |
with gr.Column():
|
71 |
task_dropdown = gr.Dropdown(
|
72 |
-
[("
|
73 |
-
|
74 |
-
label="
|
|
|
|
|
75 |
)
|
76 |
model_dropdown = gr.Dropdown(
|
77 |
-
[],
|
78 |
-
label="model",
|
79 |
-
allow_custom_value=True,
|
80 |
-
interactive=True
|
81 |
-
)
|
82 |
prompt_textarea = gr.TextArea(
|
83 |
-
label="
|
|
|
|
|
|
|
|
|
84 |
context_for_question_answer = gr.TextArea(
|
85 |
-
label="Context",
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
with gr.Column():
|
89 |
text = gr.TextArea(label="Generated Text")
|
90 |
radio.change(review_training_choices,
|
91 |
inputs=radio, outputs=use_pipeline)
|
92 |
-
test_pipeline_button.click(test_pipeline,
|
93 |
-
|
|
|
|
|
94 |
with gr.TabItem("Image"):
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
label="Select Use Pipeline to try out HF models or Fine Tune to test it on your own datasets",
|
100 |
-
value="Use Pipeline",
|
101 |
-
interactive=True
|
102 |
-
)
|
103 |
-
with gr.Column(scale=1):
|
104 |
-
test_pipeline_button = gr.Button(
|
105 |
-
value="Test", variant="primary", size="sm")
|
106 |
with gr.TabItem("Audio"):
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
interactive=True
|
114 |
-
)
|
115 |
-
with gr.Column(scale=1):
|
116 |
-
test_pipeline_button = gr.Button(
|
117 |
-
value="Test", variant="primary", size="sm")
|
118 |
-
|
119 |
-
playground.launch(share=True)
|
|
|
1 |
import gradio as gr
|
2 |
+
from task import tasks_config
|
3 |
+
from pipeline_utils import handle_task_change, review_training_choices, test_pipeline
|
4 |
+
from playground_utils import create_playground_header, create_playground_footer, create_tabs_header
|
5 |
|
6 |
playground = gr.Blocks()
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
with playground:
|
9 |
+
create_playground_header()
|
|
|
|
|
10 |
with gr.Tabs():
|
11 |
with gr.TabItem("Text"):
|
12 |
+
radio, test_pipeline_button = create_tabs_header()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
with gr.Row(visible=True) as use_pipeline:
|
14 |
with gr.Column():
|
15 |
task_dropdown = gr.Dropdown(
|
16 |
+
choices=[(task["name"], task_id)
|
17 |
+
for task_id, task in tasks_config.items()],
|
18 |
+
label="Task",
|
19 |
+
interactive=True,
|
20 |
+
info="Select Pipelines for natural language processing tasks or type if you have your own."
|
21 |
)
|
22 |
model_dropdown = gr.Dropdown(
|
23 |
+
[], label="Model", info="Select appropriate Model based on the task you selected")
|
|
|
|
|
|
|
|
|
24 |
prompt_textarea = gr.TextArea(
|
25 |
+
label="Prompt",
|
26 |
+
value="Enter your prompt here",
|
27 |
+
text_align="left",
|
28 |
+
info="Copy/Paste or type your prompt to try out. Make sure to provide clear prompt or try with different prompts"
|
29 |
+
)
|
30 |
context_for_question_answer = gr.TextArea(
|
31 |
+
label="Context",
|
32 |
+
value="Enter Context for your question here",
|
33 |
+
visible=False,
|
34 |
+
interactive=True,
|
35 |
+
info="Question answering tasks return an answer given a question. If you’ve ever asked a virtual assistant like Alexa, Siri or Google what the weather is, then you’ve used a question answering model before. Here, we are doing Extractive(extract the answer from the given context) Question answering. "
|
36 |
+
)
|
37 |
+
task_dropdown.change(handle_task_change,
|
38 |
+
inputs=[task_dropdown],
|
39 |
+
outputs=[context_for_question_answer,
|
40 |
+
model_dropdown, task_dropdown])
|
41 |
with gr.Column():
|
42 |
text = gr.TextArea(label="Generated Text")
|
43 |
radio.change(review_training_choices,
|
44 |
inputs=radio, outputs=use_pipeline)
|
45 |
+
test_pipeline_button.click(test_pipeline,
|
46 |
+
inputs=[
|
47 |
+
task_dropdown, model_dropdown, prompt_textarea, context_for_question_answer],
|
48 |
+
outputs=text)
|
49 |
with gr.TabItem("Image"):
|
50 |
+
radio, test_pipeline_button = create_tabs_header()
|
51 |
+
gr.Markdown("""
|
52 |
+
> WIP
|
53 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
with gr.TabItem("Audio"):
|
55 |
+
radio, test_pipeline_button = create_tabs_header()
|
56 |
+
gr.Markdown("""
|
57 |
+
> WIP
|
58 |
+
""")
|
59 |
+
create_playground_footer()
|
60 |
+
playground.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|