Spaces:
Running
Running
Update name of model
Browse files
app.py
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import ViltProcessor,
|
3 |
import torch
|
4 |
|
5 |
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
|
6 |
torch.hub.download_url_to_file('https://computing.ece.vt.edu/~harsh/visualAttention/ProjectWebpage/Figures/vqa_1.png', 'banana.png')
|
7 |
|
8 |
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
9 |
-
model =
|
10 |
|
11 |
def answer_question(image, text):
|
12 |
encoding = processor(image, text, return_tensors="pt")
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import ViltProcessor, ViltForQuestionAnswering
|
3 |
import torch
|
4 |
|
5 |
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
|
6 |
torch.hub.download_url_to_file('https://computing.ece.vt.edu/~harsh/visualAttention/ProjectWebpage/Figures/vqa_1.png', 'banana.png')
|
7 |
|
8 |
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
9 |
+
model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
10 |
|
11 |
def answer_question(image, text):
|
12 |
encoding = processor(image, text, return_tensors="pt")
|