nielsr HF staff commited on
Commit
ee0199f
·
1 Parent(s): 66a95c1

Use GPU if available

Browse files
Files changed (1) hide show
  1. app.py +7 -4
app.py CHANGED
@@ -17,6 +17,9 @@ import easyocr
17
  import gradio as gr
18
 
19
 
 
 
 
20
  class MaxResize(object):
21
  def __init__(self, max_size=800):
22
  self.max_size = max_size
@@ -43,11 +46,11 @@ structure_transform = transforms.Compose([
43
 
44
  # load table detection model
45
  # processor = TableTransformerImageProcessor(max_size=800)
46
- model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection", revision="no_timm")
47
 
48
  # load table structure recognition model
49
  # structure_processor = TableTransformerImageProcessor(max_size=1000)
50
- structure_model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition-v1.1-all")
51
 
52
  # load EasyOCR reader
53
  reader = easyocr.Reader(['en'])
@@ -145,7 +148,7 @@ def visualize_detected_tables(img, det_tables):
145
  def detect_and_crop_table(image):
146
  # prepare image for the model
147
  # pixel_values = processor(image, return_tensors="pt").pixel_values
148
- pixel_values = detection_transform(image).unsqueeze(0)
149
 
150
  # forward pass
151
  with torch.no_grad():
@@ -169,7 +172,7 @@ def detect_and_crop_table(image):
169
  def recognize_table(image):
170
  # prepare image for the model
171
  # pixel_values = structure_processor(images=image, return_tensors="pt").pixel_values
172
- pixel_values = structure_transform(image).unsqueeze(0)
173
 
174
  # forward pass
175
  with torch.no_grad():
 
17
  import gradio as gr
18
 
19
 
20
+ device = "cuda" if torch.cuda.is_available() else "cpu"
21
+
22
+
23
  class MaxResize(object):
24
  def __init__(self, max_size=800):
25
  self.max_size = max_size
 
46
 
47
  # load table detection model
48
  # processor = TableTransformerImageProcessor(max_size=800)
49
+ model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection", revision="no_timm").to(device)
50
 
51
  # load table structure recognition model
52
  # structure_processor = TableTransformerImageProcessor(max_size=1000)
53
+ structure_model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition-v1.1-all").to(device)
54
 
55
  # load EasyOCR reader
56
  reader = easyocr.Reader(['en'])
 
148
  def detect_and_crop_table(image):
149
  # prepare image for the model
150
  # pixel_values = processor(image, return_tensors="pt").pixel_values
151
+ pixel_values = detection_transform(image).unsqueeze(0).to(device)
152
 
153
  # forward pass
154
  with torch.no_grad():
 
172
  def recognize_table(image):
173
  # prepare image for the model
174
  # pixel_values = structure_processor(images=image, return_tensors="pt").pixel_values
175
+ pixel_values = structure_transform(image).unsqueeze(0).to(device)
176
 
177
  # forward pass
178
  with torch.no_grad():