Spaces:
Running
Running
nicolas-dufour
commited on
Commit
·
c4c7cee
1
Parent(s):
70a055c
squash: merge all unpushed commits
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- DATASET.md +34 -0
- LICENSE +21 -0
- __init__.py +0 -0
- callbacks/__init__.py +3 -0
- callbacks/__pycache__/__init__.cpython-310.pyc +0 -0
- callbacks/__pycache__/data.cpython-310.pyc +0 -0
- callbacks/__pycache__/ema.cpython-310.pyc +0 -0
- callbacks/__pycache__/fix_nans.cpython-310.pyc +0 -0
- callbacks/data.py +11 -0
- callbacks/ema.py +102 -0
- callbacks/fix_nans.py +55 -0
- configs/computer/a100.yaml +8 -0
- configs/computer/cluster-node-a100.yaml +8 -0
- configs/computer/cluster-node-v100.yaml +8 -0
- configs/computer/cpu.yaml +8 -0
- configs/computer/h100.yaml +8 -0
- configs/computer/v100.yaml +8 -0
- configs/config.yaml +90 -0
- configs/dataset/baselines/im2gps.yaml +16 -0
- configs/dataset/baselines/im2gps3k.yaml +16 -0
- configs/dataset/baselines/yfcc4k.yaml +16 -0
- configs/dataset/combined_emb.yaml +38 -0
- configs/dataset/inaturalist_emb.yaml +38 -0
- configs/dataset/osv5m.yaml +43 -0
- configs/dataset/osv5m_emb.yaml +38 -0
- configs/dataset/test_transform/center_crop.yaml +12 -0
- configs/dataset/test_transform/clip.yaml +2 -0
- configs/dataset/test_transform/empty.yaml +2 -0
- configs/dataset/test_transform/fast_clip.yaml +12 -0
- configs/dataset/test_transform/fast_resnet.yaml +12 -0
- configs/dataset/test_transform/none.yaml +6 -0
- configs/dataset/train_transform/augmentation.yaml +85 -0
- configs/dataset/train_transform/center_crop.yaml +14 -0
- configs/dataset/train_transform/clip.yaml +2 -0
- configs/dataset/train_transform/empty.yaml +2 -0
- configs/dataset/train_transform/fast_clip.yaml +12 -0
- configs/dataset/train_transform/fast_resnet.yaml +12 -0
- configs/dataset/train_transform/none.yaml +7 -0
- configs/dataset/yfcc_emb.yaml +38 -0
- configs/exp/YFCC100M_geoadalnmlp_r2_small_sigmoid_diffusion.yaml +35 -0
- configs/exp/YFCC100M_geoadalnmlp_r3_small_linear_flow_rieman.yaml +32 -0
- configs/exp/YFCC100M_geoadalnmlp_r3_small_sigmoid_diffusion.yaml +36 -0
- configs/exp/YFCC100M_geoadalnmlp_r3_small_sigmoid_flow.yaml +38 -0
- configs/exp/YFCC100M_geoadalnmlp_r3_small_sigmoid_flow_riemann.yaml +40 -0
- configs/exp/YFCC100M_geoadalnmlp_von_fisher.yaml +26 -0
- configs/exp/YFCC100M_geoadalnmlp_von_fisher_mixture.yaml +26 -0
- configs/exp/combined_geoadalnmlp_r3_small_sigmoid_flow_riemann.yaml +40 -0
- configs/exp/iNaturalist_geoadalnmlp_r2_small_sigmoid_diffusion.yaml +36 -0
- configs/exp/iNaturalist_geoadalnmlp_r3_small_sigmoid_diffusion.yaml +37 -0
- configs/exp/iNaturalist_geoadalnmlp_r3_small_sigmoid_flow.yaml +39 -0
DATASET.md
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Dataset
|
2 |
+
To download the datataset, run:
|
3 |
+
```python
|
4 |
+
# download the full dataset
|
5 |
+
from huggingface_hub import snapshot_download
|
6 |
+
snapshot_download(repo_id="osv5m/osv5m", local_dir="datasets/osv5m", repo_type='dataset')
|
7 |
+
```
|
8 |
+
|
9 |
+
and finally extract:
|
10 |
+
```python
|
11 |
+
import os
|
12 |
+
import zipfile
|
13 |
+
for root, dirs, files in os.walk("datasets/osv5m"):
|
14 |
+
for file in files:
|
15 |
+
if file.endswith(".zip"):
|
16 |
+
with zipfile.ZipFile(os.path.join(root, file), 'r') as zip_ref:
|
17 |
+
zip_ref.extractall(root)
|
18 |
+
os.remove(os.path.join(root, file))
|
19 |
+
```
|
20 |
+
|
21 |
+
You can also directly load the dataset using `load_dataset`:
|
22 |
+
```python
|
23 |
+
from datasets import load_dataset
|
24 |
+
dataset = load_dataset('osv5m/osv5m', full=False)
|
25 |
+
```
|
26 |
+
where with `full` you can specify whether you want to load the complete metadata (default: `False`).
|
27 |
+
|
28 |
+
If you only want to download the test set, you can run the script below:
|
29 |
+
```python
|
30 |
+
from huggingface_hub import hf_hub_download
|
31 |
+
for i in range(5):
|
32 |
+
hf_hub_download(repo_id="osv5m/osv5m", filename=str(i).zfill(2)+'.zip', subfolder="images/test", repo_type='dataset', local_dir="datasets/osv5m")
|
33 |
+
hf_hub_download(repo_id="osv5m/osv5m", filename="README.md", repo_type='dataset', local_dir="datasets/osv5m")
|
34 |
+
```
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 Nicolas Dufour
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
__init__.py
ADDED
File without changes
|
callbacks/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .ema import EMACallback
|
2 |
+
from .fix_nans import FixNANinGrad
|
3 |
+
from .data import IncreaseDataEpoch
|
callbacks/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (278 Bytes). View file
|
|
callbacks/__pycache__/data.cpython-310.pyc
ADDED
Binary file (851 Bytes). View file
|
|
callbacks/__pycache__/ema.cpython-310.pyc
ADDED
Binary file (3.22 kB). View file
|
|
callbacks/__pycache__/fix_nans.cpython-310.pyc
ADDED
Binary file (1.87 kB). View file
|
|
callbacks/data.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pytorch_lightning.callbacks import Callback
|
2 |
+
|
3 |
+
|
4 |
+
class IncreaseDataEpoch(Callback):
|
5 |
+
def __init__(self):
|
6 |
+
super().__init__()
|
7 |
+
|
8 |
+
def on_train_epoch_start(self, trainer, pl_module):
|
9 |
+
epoch = pl_module.current_epoch
|
10 |
+
if hasattr(trainer.datamodule.train_dataset, "shared_epoch"):
|
11 |
+
trainer.datamodule.train_dataset.shared_epoch.set_value(epoch)
|
callbacks/ema.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pytorch_lightning import Callback
|
2 |
+
import copy
|
3 |
+
import itertools
|
4 |
+
import torch
|
5 |
+
import contextlib
|
6 |
+
from torch.distributed.fsdp import FullyShardedDataParallel
|
7 |
+
|
8 |
+
|
9 |
+
class EMACallback(Callback):
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
module_attr_name,
|
13 |
+
ema_module_attr_name,
|
14 |
+
decay=0.999,
|
15 |
+
start_ema_step=0,
|
16 |
+
init_ema_random=True,
|
17 |
+
):
|
18 |
+
super().__init__()
|
19 |
+
self.decay = decay
|
20 |
+
self.module_attr_name = module_attr_name
|
21 |
+
self.ema_module_attr_name = ema_module_attr_name
|
22 |
+
self.start_ema_step = start_ema_step
|
23 |
+
self.init_ema_random = init_ema_random
|
24 |
+
|
25 |
+
def on_train_start(self, trainer, pl_module):
|
26 |
+
if pl_module.global_step == 0:
|
27 |
+
if not hasattr(pl_module, self.module_attr_name):
|
28 |
+
raise ValueError(
|
29 |
+
f"Module {pl_module} does not have attribute {self.module_attr_name}"
|
30 |
+
)
|
31 |
+
if not hasattr(pl_module, self.ema_module_attr_name):
|
32 |
+
pl_module.add_module(
|
33 |
+
self.ema_module_attr_name,
|
34 |
+
copy.deepcopy(getattr(pl_module, self.module_attr_name))
|
35 |
+
.eval()
|
36 |
+
.requires_grad_(False),
|
37 |
+
)
|
38 |
+
self.reset_ema(pl_module)
|
39 |
+
|
40 |
+
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
|
41 |
+
if pl_module.global_step == self.start_ema_step:
|
42 |
+
self.reset_ema(pl_module)
|
43 |
+
elif (
|
44 |
+
pl_module.global_step < self.start_ema_step
|
45 |
+
and pl_module.global_step % 100 == 0
|
46 |
+
):
|
47 |
+
## slow ema updates for visualisation
|
48 |
+
self.update_ema(pl_module, decay=0.9)
|
49 |
+
elif pl_module.global_step > self.start_ema_step:
|
50 |
+
self.update_ema(pl_module, decay=self.decay)
|
51 |
+
|
52 |
+
def update_ema(self, pl_module, decay=0.999):
|
53 |
+
ema_module = getattr(pl_module, self.ema_module_attr_name)
|
54 |
+
module = getattr(pl_module, self.module_attr_name)
|
55 |
+
context_manager = self.get_model_context_manager(module)
|
56 |
+
with context_manager:
|
57 |
+
with torch.no_grad():
|
58 |
+
ema_params = ema_module.state_dict()
|
59 |
+
for name, param in itertools.chain(
|
60 |
+
module.named_parameters(), module.named_buffers()
|
61 |
+
):
|
62 |
+
if name in ema_params:
|
63 |
+
if param.requires_grad:
|
64 |
+
ema_params[name].copy_(
|
65 |
+
ema_params[name].detach().lerp(param.detach(), decay)
|
66 |
+
)
|
67 |
+
|
68 |
+
def get_model_context_manager(self, module):
|
69 |
+
fsdp_enabled = is_model_fsdp(module)
|
70 |
+
model_context_manager = contextlib.nullcontext()
|
71 |
+
if fsdp_enabled:
|
72 |
+
model_context_manager = module.summon_full_params(module)
|
73 |
+
return model_context_manager
|
74 |
+
|
75 |
+
def reset_ema(self, pl_module):
|
76 |
+
ema_module = getattr(pl_module, self.ema_module_attr_name)
|
77 |
+
if self.init_ema_random:
|
78 |
+
ema_module.init_weights()
|
79 |
+
else:
|
80 |
+
module = getattr(pl_module, self.module_attr_name)
|
81 |
+
context_manager = self.get_model_context_manager(module)
|
82 |
+
with context_manager:
|
83 |
+
ema_params = ema_module.state_dict()
|
84 |
+
for name, param in itertools.chain(
|
85 |
+
module.named_parameters(), module.named_buffers()
|
86 |
+
):
|
87 |
+
if name in ema_params:
|
88 |
+
ema_params[name].copy_(param.detach())
|
89 |
+
|
90 |
+
|
91 |
+
def is_model_fsdp(model: torch.nn.Module) -> bool:
|
92 |
+
try:
|
93 |
+
if isinstance(model, FullyShardedDataParallel):
|
94 |
+
return True
|
95 |
+
|
96 |
+
# Check if model is wrapped with FSDP
|
97 |
+
for _, obj in model.named_children():
|
98 |
+
if isinstance(obj, FullyShardedDataParallel):
|
99 |
+
return True
|
100 |
+
return False
|
101 |
+
except ImportError:
|
102 |
+
return False
|
callbacks/fix_nans.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from pytorch_lightning.callbacks import Callback
|
3 |
+
import torch
|
4 |
+
|
5 |
+
log = logging.getLogger(__name__)
|
6 |
+
|
7 |
+
|
8 |
+
class FixNANinGrad(Callback):
|
9 |
+
def __init__(self, monitor):
|
10 |
+
super().__init__()
|
11 |
+
self.monitor = monitor
|
12 |
+
self.continuous_nan_batchs = 0
|
13 |
+
|
14 |
+
def on_before_optimizer_step(self, trainer, pl_module, optimizer) -> None:
|
15 |
+
has_nan = []
|
16 |
+
is_inf = []
|
17 |
+
for name, param in pl_module.named_parameters():
|
18 |
+
if param.grad is not None:
|
19 |
+
if torch.isnan(param.grad).any():
|
20 |
+
has_nan.append(name)
|
21 |
+
if torch.isinf(param.grad).any():
|
22 |
+
is_inf.append(name)
|
23 |
+
torch.nan_to_num(param.grad, nan=0, posinf=0, neginf=0, out=param.grad)
|
24 |
+
if len(has_nan) > 0:
|
25 |
+
print(f"Found NaN in {has_nan}")
|
26 |
+
if len(is_inf) > 0:
|
27 |
+
print(f"Found Inf in {is_inf}")
|
28 |
+
|
29 |
+
def on_train_batch_end(
|
30 |
+
self,
|
31 |
+
trainer,
|
32 |
+
pl_module,
|
33 |
+
outputs,
|
34 |
+
batch,
|
35 |
+
batch_idx,
|
36 |
+
) -> None:
|
37 |
+
logs = trainer.callback_metrics
|
38 |
+
i = 0
|
39 |
+
found_metric = False
|
40 |
+
while i < len(self.monitor) and not found_metric:
|
41 |
+
if self.monitor[i] in logs.keys():
|
42 |
+
current = logs[self.monitor[i]].squeeze()
|
43 |
+
found_metric = True
|
44 |
+
else:
|
45 |
+
i += 1
|
46 |
+
if not found_metric:
|
47 |
+
raise ValueError("Asked metric not in logs")
|
48 |
+
|
49 |
+
if not torch.isfinite(current):
|
50 |
+
self.continuous_nan_batchs += 1
|
51 |
+
if self.continuous_nan_batchs >= 5:
|
52 |
+
trainer.should_stop = True
|
53 |
+
log.info("Training interrupted because of NaN in {self.monitor}")
|
54 |
+
else:
|
55 |
+
self.continuous_nan_batchs = 0
|
configs/computer/a100.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
devices: 1
|
2 |
+
progress_bar_refresh_rate: 2
|
3 |
+
num_workers: 8
|
4 |
+
sync_batchnorm: False
|
5 |
+
accelerator: gpu
|
6 |
+
precision: 32
|
7 |
+
strategy: auto
|
8 |
+
num_nodes: 1
|
configs/computer/cluster-node-a100.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
devices: 8
|
2 |
+
num_workers: 8
|
3 |
+
progress_bar_refresh_rate: 2
|
4 |
+
sync_batchnorm: True
|
5 |
+
accelerator: gpu
|
6 |
+
precision: 32
|
7 |
+
strategy: ddp
|
8 |
+
num_nodes: 1
|
configs/computer/cluster-node-v100.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
devices: 4
|
2 |
+
num_workers: 10
|
3 |
+
progress_bar_refresh_rate: 2
|
4 |
+
sync_batchnorm: True
|
5 |
+
accelerator: gpu
|
6 |
+
precision: 32
|
7 |
+
strategy: ddp
|
8 |
+
num_nodes: 1
|
configs/computer/cpu.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
devices: null
|
2 |
+
num_workers: 0
|
3 |
+
progress_bar_refresh_rate: 2
|
4 |
+
sync_batchnorm: False
|
5 |
+
accelerator: cpu
|
6 |
+
precision: 32
|
7 |
+
strategy: auto
|
8 |
+
num_nodes: null
|
configs/computer/h100.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
devices: 1
|
2 |
+
progress_bar_refresh_rate: 2
|
3 |
+
num_workers: 24
|
4 |
+
sync_batchnorm: False
|
5 |
+
accelerator: gpu
|
6 |
+
precision: 32
|
7 |
+
strategy: auto
|
8 |
+
num_nodes: 1
|
configs/computer/v100.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
devices: 1
|
2 |
+
num_workers: 10
|
3 |
+
progress_bar_refresh_rate: 2
|
4 |
+
sync_batchnorm: False
|
5 |
+
accelerator: gpu
|
6 |
+
precision: 32
|
7 |
+
strategy: auto
|
8 |
+
num_nodes: 1
|
configs/config.yaml
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- model: default
|
3 |
+
- computer: v100
|
4 |
+
- dataset: osv5m_emb
|
5 |
+
- stage: null
|
6 |
+
- _self_
|
7 |
+
- exp: ???
|
8 |
+
|
9 |
+
model:
|
10 |
+
val_metrics:
|
11 |
+
_target_: metrics.distance_based.HaversineMetrics
|
12 |
+
acc_radiuses:
|
13 |
+
- 1
|
14 |
+
- 25
|
15 |
+
- 200
|
16 |
+
- 750
|
17 |
+
- 2500
|
18 |
+
acc_area: []
|
19 |
+
test_metrics:
|
20 |
+
_target_: metrics.distance_based.HaversineMetrics
|
21 |
+
acc_radiuses:
|
22 |
+
- 1
|
23 |
+
- 25
|
24 |
+
- 200
|
25 |
+
- 750
|
26 |
+
- 2500
|
27 |
+
acc_area: ${areas}
|
28 |
+
|
29 |
+
datamodule:
|
30 |
+
_target_: data.datamodule.ImageDataModule
|
31 |
+
train_dataset: ${dataset.train_dataset}
|
32 |
+
val_dataset: ${dataset.val_dataset}
|
33 |
+
test_dataset: ${dataset.test_dataset}
|
34 |
+
full_batch_size: ${dataset.full_batch_size}
|
35 |
+
eval_batch_size: ${dataset.eval_batch_size}
|
36 |
+
num_workers: ${computer.num_workers}
|
37 |
+
num_nodes: ${computer.num_nodes}
|
38 |
+
num_devices: ${computer.devices}
|
39 |
+
val_proportion: 0.02
|
40 |
+
|
41 |
+
trainer:
|
42 |
+
_target_: pytorch_lightning.Trainer
|
43 |
+
devices: ${computer.devices}
|
44 |
+
accelerator: ${computer.accelerator}
|
45 |
+
strategy: ${computer.strategy}
|
46 |
+
num_nodes: ${computer.num_nodes}
|
47 |
+
precision: ${computer.precision}
|
48 |
+
max_steps: 1000000
|
49 |
+
val_check_interval: 25000
|
50 |
+
check_val_every_n_epoch: null
|
51 |
+
|
52 |
+
logger:
|
53 |
+
_target_: pytorch_lightning.loggers.WandbLogger
|
54 |
+
save_dir: ${root_dir}
|
55 |
+
name: ${experiment_name}${logger_suffix}
|
56 |
+
project: diff_plonk
|
57 |
+
log_model: False
|
58 |
+
offline: False
|
59 |
+
|
60 |
+
checkpoints:
|
61 |
+
_target_: pytorch_lightning.callbacks.ModelCheckpoint
|
62 |
+
dirpath: ${root_dir}/checkpoints/${experiment_name}
|
63 |
+
filename: 'epoch_{epoch}'
|
64 |
+
monitor: val/loss
|
65 |
+
save_last: True
|
66 |
+
save_top_k: 0
|
67 |
+
every_n_epochs: 1
|
68 |
+
enable_version_counter: False
|
69 |
+
|
70 |
+
progress_bar:
|
71 |
+
_target_: pytorch_lightning.callbacks.TQDMProgressBar
|
72 |
+
refresh_rate: ${computer.progress_bar_refresh_rate}
|
73 |
+
|
74 |
+
data_dir: ${root_dir}/datasets
|
75 |
+
root_dir: ${hydra:runtime.cwd}
|
76 |
+
experiment_name: ${dataset.name}_${model.name}_${experiment_name_suffix}
|
77 |
+
experiment_name_suffix: base
|
78 |
+
logger_suffix: ""
|
79 |
+
mode: train # change that to eval to do the testing
|
80 |
+
areas: ['country', 'region', 'sub-region', 'city']
|
81 |
+
class_name: null
|
82 |
+
streetclip: False
|
83 |
+
blur: False
|
84 |
+
text_tuning: False
|
85 |
+
|
86 |
+
hydra:
|
87 |
+
run:
|
88 |
+
dir: outputs/${hydra.job.name}/${now:%Y-%m-%d_%H-%M-%S}/${experiment_name}
|
89 |
+
job:
|
90 |
+
chdir: true
|
configs/dataset/baselines/im2gps.yaml
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset:
|
2 |
+
name: im2gps
|
3 |
+
full_batch_size: 512
|
4 |
+
test_dataset:
|
5 |
+
_partial_: true
|
6 |
+
_target_: data.data.Baseline
|
7 |
+
path: ${data_dir}/baselines/im2gps
|
8 |
+
which: 'im2gps'
|
9 |
+
transforms: ${dataset.test_transform}
|
10 |
+
datamodule:
|
11 |
+
_target_: data.datamodule.BaselineDataModule
|
12 |
+
test_dataset: ${dataset.test_dataset}
|
13 |
+
full_batch_size: ${dataset.full_batch_size}
|
14 |
+
num_workers: ${computer.num_workers}
|
15 |
+
num_nodes: ${computer.num_nodes}
|
16 |
+
num_devices: ${computer.devices}
|
configs/dataset/baselines/im2gps3k.yaml
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset:
|
2 |
+
name: im2gps3k
|
3 |
+
full_batch_size: 512
|
4 |
+
test_dataset:
|
5 |
+
_partial_: true
|
6 |
+
_target_: data.data.Baseline
|
7 |
+
path: ${data_dir}/baselines/im2gps3k
|
8 |
+
which: 'im2gps3k'
|
9 |
+
transforms: ${dataset.test_transform}
|
10 |
+
datamodule:
|
11 |
+
_target_: data.datamodule.BaselineDataModule
|
12 |
+
test_dataset: ${dataset.test_dataset}
|
13 |
+
full_batch_size: ${dataset.full_batch_size}
|
14 |
+
num_workers: ${computer.num_workers}
|
15 |
+
num_nodes: ${computer.num_nodes}
|
16 |
+
num_devices: ${computer.devices}
|
configs/dataset/baselines/yfcc4k.yaml
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset:
|
2 |
+
name: yfcc4k
|
3 |
+
full_batch_size: 512
|
4 |
+
test_dataset:
|
5 |
+
_partial_: true
|
6 |
+
_target_: data.data.Baseline
|
7 |
+
path: ${data_dir}/baselines/yfcc4k
|
8 |
+
which: 'yfcc4k'
|
9 |
+
transforms: ${dataset.test_transform}
|
10 |
+
datamodule:
|
11 |
+
_target_: data.datamodule.BaselineDataModule
|
12 |
+
test_dataset: ${dataset.test_dataset}
|
13 |
+
full_batch_size: ${dataset.full_batch_size}
|
14 |
+
num_workers: ${computer.num_workers}
|
15 |
+
num_nodes: ${computer.num_nodes}
|
16 |
+
num_devices: ${computer.devices}
|
configs/dataset/combined_emb.yaml
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- train_transform: empty
|
3 |
+
- test_transform: empty
|
4 |
+
- _self_
|
5 |
+
|
6 |
+
name: iNaturalist_OSV5M_YFCC100M_${dataset.embedding_name}
|
7 |
+
full_batch_size: 2048
|
8 |
+
cond_dim: 1024
|
9 |
+
eval_batch_size: 4096
|
10 |
+
output_type: emb
|
11 |
+
embedding_name: dinov2_vitl14_registers
|
12 |
+
|
13 |
+
train_dataset:
|
14 |
+
_partial_: true
|
15 |
+
_target_: data.webdataset.GPSWebdataset
|
16 |
+
root: ${data_dir}/YFCC100M/train/ ${data_dir}/osv5m/train/ ${data_dir}/inaturalist/train/ ${data_dir}/osv5m/train/ ${data_dir}/inaturalist/train/
|
17 |
+
train: true
|
18 |
+
embedding_name: ${dataset.embedding_name}
|
19 |
+
return_image: false
|
20 |
+
metadata_attributes: []
|
21 |
+
|
22 |
+
val_dataset:
|
23 |
+
_partial_: true
|
24 |
+
_target_: data.webdataset.GPSWebdataset
|
25 |
+
root: ${data_dir}/YFCC100M/yfcc4k/
|
26 |
+
train: false
|
27 |
+
embedding_name: ${dataset.embedding_name}
|
28 |
+
return_image: false
|
29 |
+
metadata_attributes: []
|
30 |
+
|
31 |
+
test_dataset:
|
32 |
+
_partial_: true
|
33 |
+
_target_: data.webdataset.GPSWebdataset
|
34 |
+
root: ${data_dir}/YFCC100M/yfcc4k/
|
35 |
+
train: false
|
36 |
+
embedding_name: ${dataset.embedding_name}
|
37 |
+
return_image: false
|
38 |
+
metadata_attributes: []
|
configs/dataset/inaturalist_emb.yaml
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- train_transform: empty
|
3 |
+
- test_transform: empty
|
4 |
+
- _self_
|
5 |
+
|
6 |
+
name: iNaturalist_${dataset.embedding_name}
|
7 |
+
full_batch_size: 512
|
8 |
+
cond_dim: 1024
|
9 |
+
eval_batch_size: 4096
|
10 |
+
output_type: emb
|
11 |
+
embedding_name: dinov2_vitl14_registers
|
12 |
+
|
13 |
+
train_dataset:
|
14 |
+
_partial_: true
|
15 |
+
_target_: data.webdataset.GPSWebdataset
|
16 |
+
root: ${data_dir}/inaturalist/train/
|
17 |
+
train: true
|
18 |
+
embedding_name: ${dataset.embedding_name}
|
19 |
+
return_image: false
|
20 |
+
metadata_attributes: []
|
21 |
+
|
22 |
+
val_dataset:
|
23 |
+
_partial_: true
|
24 |
+
_target_: data.webdataset.GPSWebdataset
|
25 |
+
root: ${data_dir}/inaturalist/val/
|
26 |
+
train: false
|
27 |
+
embedding_name: ${dataset.embedding_name}
|
28 |
+
return_image: false
|
29 |
+
metadata_attributes: []
|
30 |
+
|
31 |
+
test_dataset:
|
32 |
+
_partial_: true
|
33 |
+
_target_: data.webdataset.GPSWebdataset
|
34 |
+
root: ${data_dir}/inaturalist/test/
|
35 |
+
train: false
|
36 |
+
embedding_name: ${dataset.embedding_name}
|
37 |
+
return_image: false
|
38 |
+
metadata_attributes: []
|
configs/dataset/osv5m.yaml
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- train_transform: fast_clip
|
3 |
+
- test_transform: fast_clip
|
4 |
+
- _self_
|
5 |
+
|
6 |
+
name: osv5m
|
7 |
+
full_batch_size: 2048
|
8 |
+
eval_batch_size: 4096
|
9 |
+
train_dataset:
|
10 |
+
_partial_: true
|
11 |
+
_target_: data.data.OSV5M
|
12 |
+
path: ${data_dir}/osv5m/
|
13 |
+
split: train
|
14 |
+
class_name: ${class_name}
|
15 |
+
transforms: ${dataset.train_transform}
|
16 |
+
is_baseline: ${is_baseline}
|
17 |
+
areas: ${areas}
|
18 |
+
streetclip: ${streetclip}
|
19 |
+
blur: ${blur}
|
20 |
+
|
21 |
+
val_dataset:
|
22 |
+
_partial_: true
|
23 |
+
_target_: data.data.OSV5M
|
24 |
+
path: ${data_dir}/osv5m/
|
25 |
+
split: val
|
26 |
+
class_name: ${class_name}
|
27 |
+
transforms: ${dataset.test_transform}
|
28 |
+
is_baseline: ${is_baseline}
|
29 |
+
areas: ${areas}
|
30 |
+
streetclip: ${streetclip}
|
31 |
+
blur: ${blur}
|
32 |
+
|
33 |
+
test_dataset:
|
34 |
+
_partial_: true
|
35 |
+
_target_: data.data.OSV5M
|
36 |
+
path: ${data_dir}/osv5m/
|
37 |
+
split: test
|
38 |
+
class_name: ${class_name}
|
39 |
+
transforms: ${dataset.test_transform}
|
40 |
+
is_baseline: ${is_baseline}
|
41 |
+
areas: ${areas}
|
42 |
+
streetclip: ${streetclip}
|
43 |
+
blur: ${blur}
|
configs/dataset/osv5m_emb.yaml
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- train_transform: empty
|
3 |
+
- test_transform: empty
|
4 |
+
- _self_
|
5 |
+
|
6 |
+
name: osv5m_${dataset.embedding_name}
|
7 |
+
full_batch_size: 1024
|
8 |
+
eval_batch_size: 4096
|
9 |
+
cond_dim: 1024
|
10 |
+
output_type: emb
|
11 |
+
embedding_name: street_clip
|
12 |
+
|
13 |
+
train_dataset:
|
14 |
+
_partial_: true
|
15 |
+
_target_: data.webdataset.GPSWebdataset
|
16 |
+
root: ${data_dir}/osv5m/train/
|
17 |
+
train: true
|
18 |
+
embedding_name: ${dataset.embedding_name}
|
19 |
+
return_image: false
|
20 |
+
metadata_attributes: []
|
21 |
+
|
22 |
+
val_dataset:
|
23 |
+
_partial_: true
|
24 |
+
_target_: data.webdataset.GPSWebdataset
|
25 |
+
root: ${data_dir}/osv5m/val/
|
26 |
+
train: false
|
27 |
+
embedding_name: ${dataset.embedding_name}
|
28 |
+
return_image: false
|
29 |
+
metadata_attributes: ["unique_country", "unique_region", "unique_sub-region", "unique_city"]
|
30 |
+
|
31 |
+
test_dataset:
|
32 |
+
_partial_: true
|
33 |
+
_target_: data.webdataset.GPSWebdataset
|
34 |
+
root: ${data_dir}/osv5m/test/
|
35 |
+
train: false
|
36 |
+
embedding_name: ${dataset.embedding_name}
|
37 |
+
return_image: false
|
38 |
+
metadata_attributes: ["unique_country", "unique_region", "unique_sub-region", "unique_city"]
|
configs/dataset/test_transform/center_crop.yaml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_target_: torchvision.transforms.Compose
|
2 |
+
transforms:
|
3 |
+
- _target_: torchvision.transforms.ToTensor
|
4 |
+
- _target_: utils.image_processing.CenterCrop
|
5 |
+
ratio: "1:1"
|
6 |
+
- _target_: torchvision.transforms.Resize
|
7 |
+
size: ${dataset.img_resolution}
|
8 |
+
interpolation: 3
|
9 |
+
antialias: true
|
10 |
+
- _target_: torchvision.transforms.Normalize
|
11 |
+
mean: 0.5
|
12 |
+
std: 0.5
|
configs/dataset/test_transform/clip.yaml
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
_target_: data.transforms.ClipTransform
|
2 |
+
split: val
|
configs/dataset/test_transform/empty.yaml
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
_target_: data.data.null_transform
|
2 |
+
_partial_: true
|
configs/dataset/test_transform/fast_clip.yaml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_target_: torchvision.transforms.Compose
|
2 |
+
transforms:
|
3 |
+
- _target_: torchvision.transforms.Resize
|
4 |
+
size: 224
|
5 |
+
interpolation: 3
|
6 |
+
antialias: true
|
7 |
+
- _target_: torchvision.transforms.CenterCrop
|
8 |
+
size: 224
|
9 |
+
- _target_: torchvision.transforms.ToTensor
|
10 |
+
- _target_: torchvision.transforms.Normalize
|
11 |
+
mean: [0.48145466, 0.4578275, 0.40821073]
|
12 |
+
std: [0.26862954, 0.26130258, 0.27577711]
|
configs/dataset/test_transform/fast_resnet.yaml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_target_: torchvision.transforms.Compose
|
2 |
+
transforms:
|
3 |
+
- _target_: torchvision.transforms.Resize
|
4 |
+
size: 224
|
5 |
+
interpolation: 3
|
6 |
+
antialias: true
|
7 |
+
- _target_: torchvision.transforms.CenterCrop
|
8 |
+
size: 224
|
9 |
+
- _target_: torchvision.transforms.ToTensor
|
10 |
+
- _target_: torchvision.transforms.Normalize
|
11 |
+
mean: [0.485 ,0.456 ,0.406]
|
12 |
+
std: [0.229, 0.224, 0.225]
|
configs/dataset/test_transform/none.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_target_: torchvision.transforms.Compose
|
2 |
+
transforms:
|
3 |
+
- _target_: torchvision.transforms.ToTensor
|
4 |
+
- _target_: torchvision.transforms.Normalize
|
5 |
+
mean: 0.5
|
6 |
+
std: 0.5
|
configs/dataset/train_transform/augmentation.yaml
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_target_: data.augmentation.ImageAugmentation
|
2 |
+
names: "standard_augmentation,geometric_augmentation,clip_transform"
|
3 |
+
|
4 |
+
# always apply clip_transform at the end
|
5 |
+
clip_transform:
|
6 |
+
_target_: torchvision.transforms.Compose
|
7 |
+
transforms:
|
8 |
+
- _target_: torchvision.transforms.Resize
|
9 |
+
size: 224
|
10 |
+
interpolation: 3
|
11 |
+
antialias: true
|
12 |
+
- _target_: torchvision.transforms.CenterCrop
|
13 |
+
size: 224
|
14 |
+
- _target_: torchvision.transforms.ToTensor
|
15 |
+
- _target_: torchvision.transforms.Normalize
|
16 |
+
mean: [0.48145466, 0.4578275, 0.40821073]
|
17 |
+
std: [0.26862954, 0.26130258, 0.27577711]
|
18 |
+
|
19 |
+
standard_augmentation:
|
20 |
+
_target_: data.augmentation.StandardAugmentation
|
21 |
+
# by default, we all augmentation methods
|
22 |
+
names: "brightness,contrast,sharpness,color,blur,gaussian_noise"
|
23 |
+
|
24 |
+
# random PIL brigtness
|
25 |
+
brightness:
|
26 |
+
_target_: data.augmentation.PillowBrightness
|
27 |
+
p: 0.2
|
28 |
+
factor_interval: [0.5, 1.5]
|
29 |
+
|
30 |
+
# random PIL contrast
|
31 |
+
contrast:
|
32 |
+
_target_: data.augmentation.PillowContrast
|
33 |
+
p: 0.2
|
34 |
+
factor_interval: [0.3, 3]
|
35 |
+
|
36 |
+
# random PIL sharpness
|
37 |
+
sharpness:
|
38 |
+
_target_: data.augmentation.PillowSharpness
|
39 |
+
p: 0.2
|
40 |
+
factor_interval: [0.5, 30.0]
|
41 |
+
|
42 |
+
# random PIL color
|
43 |
+
color:
|
44 |
+
_target_: data.augmentation.PillowColor
|
45 |
+
p: 0.2
|
46 |
+
factor_interval: [0.0, 2.0]
|
47 |
+
|
48 |
+
# random PIL blur
|
49 |
+
blur:
|
50 |
+
_target_: data.augmentation.PillowBlur
|
51 |
+
p: 0.2
|
52 |
+
factor_interval: [1, 2]
|
53 |
+
|
54 |
+
# random numpy gaussian noise
|
55 |
+
gaussian_noise:
|
56 |
+
_target_: data.augmentation.NumpyGaussianNoise
|
57 |
+
p: 0.2
|
58 |
+
factor_interval: [0.1, 0.04]
|
59 |
+
|
60 |
+
geometric_augmentation:
|
61 |
+
_target_: data.augmentation.GeometricAugmentation
|
62 |
+
# by default, we all augmentation methods
|
63 |
+
names: "random_rotation,random_resized_crop,random_horizontal_flip"
|
64 |
+
|
65 |
+
# random rotation
|
66 |
+
random_rotation:
|
67 |
+
_target_: torchvision.transforms.RandomRotation
|
68 |
+
degrees: [-15, 15]
|
69 |
+
|
70 |
+
# random crop
|
71 |
+
random_resized_crop:
|
72 |
+
_target_: torchvision.transforms.RandomResizedCrop
|
73 |
+
scale: [0.5, 1.0]
|
74 |
+
ratio: [0.9, 1.1]
|
75 |
+
size: 224
|
76 |
+
|
77 |
+
# random horizontal flip
|
78 |
+
random_horizontal_flip:
|
79 |
+
_target_: torchvision.transforms.RandomHorizontalFlip
|
80 |
+
p: 0.5
|
81 |
+
|
82 |
+
# random vertical flip
|
83 |
+
random_vertical_flip:
|
84 |
+
_target_: torchvision.transforms.RandomVerticalFlip
|
85 |
+
p: 0.5
|
configs/dataset/train_transform/center_crop.yaml
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_target_: torchvision.transforms.Compose
|
2 |
+
transforms:
|
3 |
+
- _target_: torchvision.transforms.ToTensor
|
4 |
+
- _target_: utils.image_processing.CenterCrop
|
5 |
+
ratio: "1:1"
|
6 |
+
- _target_: torchvision.transforms.Resize
|
7 |
+
size: ${dataset.img_resolution}
|
8 |
+
interpolation: 3
|
9 |
+
antialias: true
|
10 |
+
- _target_: torchvision.transforms.RandomHorizontalFlip
|
11 |
+
p: 0.5
|
12 |
+
- _target_: torchvision.transforms.Normalize
|
13 |
+
mean: 0.5
|
14 |
+
std: 0.5
|
configs/dataset/train_transform/clip.yaml
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
_target_: data.transforms.ClipTransform
|
2 |
+
split: val
|
configs/dataset/train_transform/empty.yaml
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
_target_: data.data.null_transform
|
2 |
+
_partial_: true
|
configs/dataset/train_transform/fast_clip.yaml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_target_: torchvision.transforms.Compose
|
2 |
+
transforms:
|
3 |
+
- _target_: torchvision.transforms.Resize
|
4 |
+
size: 224
|
5 |
+
interpolation: 3
|
6 |
+
antialias: true
|
7 |
+
- _target_: torchvision.transforms.CenterCrop
|
8 |
+
size: 224
|
9 |
+
- _target_: torchvision.transforms.ToTensor
|
10 |
+
- _target_: torchvision.transforms.Normalize
|
11 |
+
mean: [0.48145466, 0.4578275, 0.40821073]
|
12 |
+
std: [0.26862954, 0.26130258, 0.27577711]
|
configs/dataset/train_transform/fast_resnet.yaml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_target_: torchvision.transforms.Compose
|
2 |
+
transforms:
|
3 |
+
- _target_: torchvision.transforms.Resize
|
4 |
+
size: 224
|
5 |
+
interpolation: 3
|
6 |
+
antialias: true
|
7 |
+
- _target_: torchvision.transforms.CenterCrop
|
8 |
+
size: 224
|
9 |
+
- _target_: torchvision.transforms.ToTensor
|
10 |
+
- _target_: torchvision.transforms.Normalize
|
11 |
+
mean: [0.485 ,0.456 ,0.406]
|
12 |
+
std: [0.229, 0.224, 0.225]
|
configs/dataset/train_transform/none.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_target_: torchvision.transforms.Compose
|
2 |
+
transforms:
|
3 |
+
- _target_: torchvision.transforms.Resize
|
4 |
+
size: 224
|
5 |
+
interpolation: 3
|
6 |
+
antialias: true
|
7 |
+
- _target_: torchvision.transforms.ToTensor
|
configs/dataset/yfcc_emb.yaml
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- train_transform: empty
|
3 |
+
- test_transform: empty
|
4 |
+
- _self_
|
5 |
+
|
6 |
+
name: iNaturalist_${dataset.embedding_name}
|
7 |
+
full_batch_size: 2048
|
8 |
+
cond_dim: 1024
|
9 |
+
eval_batch_size: 4096
|
10 |
+
output_type: emb
|
11 |
+
embedding_name: dinov2_vitl14_registers
|
12 |
+
|
13 |
+
train_dataset:
|
14 |
+
_partial_: true
|
15 |
+
_target_: data.webdataset.GPSWebdataset
|
16 |
+
root: ${data_dir}/YFCC100M/train/
|
17 |
+
train: true
|
18 |
+
embedding_name: ${dataset.embedding_name}
|
19 |
+
return_image: false
|
20 |
+
metadata_attributes: []
|
21 |
+
|
22 |
+
val_dataset:
|
23 |
+
_partial_: true
|
24 |
+
_target_: data.webdataset.GPSWebdataset
|
25 |
+
root: ${data_dir}/YFCC100M/yfcc4k/
|
26 |
+
train: false
|
27 |
+
embedding_name: ${dataset.embedding_name}
|
28 |
+
return_image: false
|
29 |
+
metadata_attributes: []
|
30 |
+
|
31 |
+
test_dataset:
|
32 |
+
_partial_: true
|
33 |
+
_target_: data.webdataset.GPSWebdataset
|
34 |
+
root: ${data_dir}/YFCC100M/yfcc4k/
|
35 |
+
train: false
|
36 |
+
embedding_name: ${dataset.embedding_name}
|
37 |
+
return_image: false
|
38 |
+
metadata_attributes: []
|
configs/exp/YFCC100M_geoadalnmlp_r2_small_sigmoid_diffusion.yaml
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /dataset: yfcc_emb
|
5 |
+
- override /model: emb_cond
|
6 |
+
- override /model/network: geo_adaln_mlp
|
7 |
+
- override /model/train_noise_scheduler: sigmoid
|
8 |
+
- override /model/inference_noise_scheduler: sigmoid
|
9 |
+
- override /model/loss: ddpm
|
10 |
+
- _self_
|
11 |
+
|
12 |
+
model:
|
13 |
+
network:
|
14 |
+
depth: 12
|
15 |
+
dim: 512
|
16 |
+
optimizer:
|
17 |
+
optim:
|
18 |
+
lr: 8e-4
|
19 |
+
weight_decay: 0.05
|
20 |
+
loss:
|
21 |
+
cond_drop_rate: 0.1
|
22 |
+
train_noise_scheduler:
|
23 |
+
start: -7
|
24 |
+
end: 3
|
25 |
+
tau: 1.0
|
26 |
+
inference_noise_scheduler:
|
27 |
+
start: -7
|
28 |
+
end: 3
|
29 |
+
tau: 1.0
|
30 |
+
interpolant: diffusion
|
31 |
+
dataset:
|
32 |
+
full_batch_size: 1024
|
33 |
+
|
34 |
+
experiment_name_suffix: small_sigmoid
|
35 |
+
areas: []
|
configs/exp/YFCC100M_geoadalnmlp_r3_small_linear_flow_rieman.yaml
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /dataset: yfcc_emb
|
5 |
+
- override /model: emb_cond_cartesian
|
6 |
+
- override /model/network: geo_adaln_mlp
|
7 |
+
- override /model/train_noise_scheduler: linear
|
8 |
+
- override /model/inference_noise_scheduler: linear
|
9 |
+
- override /model/loss: riemannian_flow_matching
|
10 |
+
- override /model/manifold: sphere
|
11 |
+
- override /model/val_sampler: riemannian_flow_matching
|
12 |
+
- override /model/test_sampler: riemannian_flow_matching
|
13 |
+
- _self_
|
14 |
+
|
15 |
+
model:
|
16 |
+
network:
|
17 |
+
depth: 12
|
18 |
+
dim: 512
|
19 |
+
optimizer:
|
20 |
+
optim:
|
21 |
+
lr: 8e-4
|
22 |
+
weight_decay: 0.05
|
23 |
+
loss:
|
24 |
+
cond_drop_rate: 0.1
|
25 |
+
interpolant: flow_matching
|
26 |
+
|
27 |
+
dataset:
|
28 |
+
full_batch_size: 1024
|
29 |
+
|
30 |
+
areas: []
|
31 |
+
|
32 |
+
experiment_name_suffix: small_sigmoid
|
configs/exp/YFCC100M_geoadalnmlp_r3_small_sigmoid_diffusion.yaml
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /dataset: yfcc_emb
|
5 |
+
- override /model: emb_cond_cartesian
|
6 |
+
- override /model/network: geo_adaln_mlp
|
7 |
+
- override /model/train_noise_scheduler: sigmoid
|
8 |
+
- override /model/inference_noise_scheduler: sigmoid
|
9 |
+
- override /model/loss: ddpm
|
10 |
+
- _self_
|
11 |
+
|
12 |
+
model:
|
13 |
+
network:
|
14 |
+
depth: 12
|
15 |
+
dim: 512
|
16 |
+
optimizer:
|
17 |
+
optim:
|
18 |
+
lr: 8e-4
|
19 |
+
weight_decay: 0.05
|
20 |
+
loss:
|
21 |
+
cond_drop_rate: 0.1
|
22 |
+
train_noise_scheduler:
|
23 |
+
start: -7
|
24 |
+
end: 3
|
25 |
+
tau: 1.0
|
26 |
+
inference_noise_scheduler:
|
27 |
+
start: -7
|
28 |
+
end: 3
|
29 |
+
tau: 1.0
|
30 |
+
interpolant: diffusion
|
31 |
+
|
32 |
+
dataset:
|
33 |
+
full_batch_size: 1024
|
34 |
+
|
35 |
+
experiment_name_suffix: small_sigmoid
|
36 |
+
areas: []
|
configs/exp/YFCC100M_geoadalnmlp_r3_small_sigmoid_flow.yaml
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /dataset: yfcc_emb
|
5 |
+
- override /model: emb_cond_cartesian
|
6 |
+
- override /model/network: geo_adaln_mlp
|
7 |
+
- override /model/train_noise_scheduler: sigmoid
|
8 |
+
- override /model/inference_noise_scheduler: sigmoid
|
9 |
+
- override /model/loss: flow_matching
|
10 |
+
- override /model/val_sampler: flow_matching
|
11 |
+
- override /model/test_sampler: flow_matching
|
12 |
+
- _self_
|
13 |
+
|
14 |
+
model:
|
15 |
+
network:
|
16 |
+
depth: 12
|
17 |
+
dim: 512
|
18 |
+
optimizer:
|
19 |
+
optim:
|
20 |
+
lr: 8e-4
|
21 |
+
weight_decay: 0.05
|
22 |
+
loss:
|
23 |
+
cond_drop_rate: 0.1
|
24 |
+
train_noise_scheduler:
|
25 |
+
start: -7
|
26 |
+
end: 3
|
27 |
+
tau: 1.0
|
28 |
+
inference_noise_scheduler:
|
29 |
+
start: -7
|
30 |
+
end: 3
|
31 |
+
tau: 1.0
|
32 |
+
interpolant: flow_matching
|
33 |
+
|
34 |
+
dataset:
|
35 |
+
full_batch_size: 1024
|
36 |
+
|
37 |
+
experiment_name_suffix: small_sigmoid
|
38 |
+
areas: []
|
configs/exp/YFCC100M_geoadalnmlp_r3_small_sigmoid_flow_riemann.yaml
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /dataset: yfcc_emb
|
5 |
+
- override /model: emb_cond_cartesian
|
6 |
+
- override /model/network: geo_adaln_mlp
|
7 |
+
- override /model/train_noise_scheduler: sigmoid
|
8 |
+
- override /model/inference_noise_scheduler: sigmoid
|
9 |
+
- override /model/loss: riemannian_flow_matching
|
10 |
+
- override /model/manifold: sphere
|
11 |
+
- override /model/val_sampler: riemannian_flow_matching
|
12 |
+
- override /model/test_sampler: riemannian_flow_matching
|
13 |
+
- _self_
|
14 |
+
|
15 |
+
model:
|
16 |
+
network:
|
17 |
+
depth: 12
|
18 |
+
dim: 512
|
19 |
+
optimizer:
|
20 |
+
optim:
|
21 |
+
lr: 8e-4
|
22 |
+
weight_decay: 0.05
|
23 |
+
loss:
|
24 |
+
cond_drop_rate: 0.1
|
25 |
+
train_noise_scheduler:
|
26 |
+
start: -7
|
27 |
+
end: 3
|
28 |
+
tau: 1.0
|
29 |
+
inference_noise_scheduler:
|
30 |
+
start: -7
|
31 |
+
end: 3
|
32 |
+
tau: 1.0
|
33 |
+
interpolant: flow_matching
|
34 |
+
|
35 |
+
dataset:
|
36 |
+
full_batch_size: 1024
|
37 |
+
|
38 |
+
areas: []
|
39 |
+
|
40 |
+
experiment_name_suffix: small_sigmoid
|
configs/exp/YFCC100M_geoadalnmlp_von_fisher.yaml
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /dataset: yfcc_emb
|
5 |
+
- override /model: von_fisher
|
6 |
+
- override /model/network: geo_adaln_mlp_von_fisher
|
7 |
+
- override /model/loss: von_fisher
|
8 |
+
- override /model/val_sampler: von_fisher
|
9 |
+
- override /model/test_sampler: von_fisher
|
10 |
+
- _self_
|
11 |
+
|
12 |
+
model:
|
13 |
+
network:
|
14 |
+
depth: 11 # To compensate the increase in params
|
15 |
+
dim: 512
|
16 |
+
optimizer:
|
17 |
+
optim:
|
18 |
+
lr: 1e-4
|
19 |
+
weight_decay: 0.05
|
20 |
+
dataset:
|
21 |
+
full_batch_size: 1024
|
22 |
+
trainer:
|
23 |
+
gradient_clip_val: 0.05
|
24 |
+
gradient_clip_algorithm: norm
|
25 |
+
areas: []
|
26 |
+
experiment_name_suffix: von_fisher
|
configs/exp/YFCC100M_geoadalnmlp_von_fisher_mixture.yaml
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /dataset: yfcc_emb
|
5 |
+
- override /model: von_fisher_mixture
|
6 |
+
- override /model/network: geo_adaln_mlp_von_fisher_mixture
|
7 |
+
- override /model/loss: von_fisher_mixture
|
8 |
+
- override /model/val_sampler: von_fisher_mixture
|
9 |
+
- override /model/test_sampler: von_fisher_mixture
|
10 |
+
- _self_
|
11 |
+
|
12 |
+
model:
|
13 |
+
network:
|
14 |
+
depth: 11 # To compensate the increase in params
|
15 |
+
dim: 512
|
16 |
+
optimizer:
|
17 |
+
optim:
|
18 |
+
lr: 1e-5
|
19 |
+
weight_decay: 0.05
|
20 |
+
dataset:
|
21 |
+
full_batch_size: 1024
|
22 |
+
trainer:
|
23 |
+
gradient_clip_val: 0.01
|
24 |
+
gradient_clip_algorithm: norm
|
25 |
+
experiment_name_suffix: von_fisher_mixture
|
26 |
+
areas: []
|
configs/exp/combined_geoadalnmlp_r3_small_sigmoid_flow_riemann.yaml
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /dataset: combined_emb
|
5 |
+
- override /model: emb_cond_cartesian
|
6 |
+
- override /model/network: geo_adaln_mlp
|
7 |
+
- override /model/train_noise_scheduler: sigmoid
|
8 |
+
- override /model/inference_noise_scheduler: sigmoid
|
9 |
+
- override /model/loss: riemannian_flow_matching
|
10 |
+
- override /model/manifold: sphere
|
11 |
+
- override /model/val_sampler: riemannian_flow_matching
|
12 |
+
- override /model/test_sampler: riemannian_flow_matching
|
13 |
+
- _self_
|
14 |
+
|
15 |
+
model:
|
16 |
+
network:
|
17 |
+
depth: 12
|
18 |
+
dim: 512
|
19 |
+
optimizer:
|
20 |
+
optim:
|
21 |
+
lr: 8e-4
|
22 |
+
weight_decay: 0.05
|
23 |
+
loss:
|
24 |
+
cond_drop_rate: 0.1
|
25 |
+
train_noise_scheduler:
|
26 |
+
start: -7
|
27 |
+
end: 3
|
28 |
+
tau: 1.0
|
29 |
+
inference_noise_scheduler:
|
30 |
+
start: -7
|
31 |
+
end: 3
|
32 |
+
tau: 1.0
|
33 |
+
interpolant: flow_matching
|
34 |
+
|
35 |
+
dataset:
|
36 |
+
full_batch_size: 1024
|
37 |
+
|
38 |
+
areas: []
|
39 |
+
|
40 |
+
experiment_name_suffix: small_sigmoid
|
configs/exp/iNaturalist_geoadalnmlp_r2_small_sigmoid_diffusion.yaml
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /dataset: inaturalist_emb
|
5 |
+
- override /model: emb_cond
|
6 |
+
- override /model/network: geo_adaln_mlp
|
7 |
+
- override /model/train_noise_scheduler: sigmoid
|
8 |
+
- override /model/inference_noise_scheduler: sigmoid
|
9 |
+
- override /model/loss: ddpm
|
10 |
+
- _self_
|
11 |
+
|
12 |
+
model:
|
13 |
+
network:
|
14 |
+
depth: 12
|
15 |
+
dim: 256
|
16 |
+
optimizer:
|
17 |
+
optim:
|
18 |
+
lr: 8e-4
|
19 |
+
weight_decay: 0.1
|
20 |
+
loss:
|
21 |
+
cond_drop_rate: 0.1
|
22 |
+
train_noise_scheduler:
|
23 |
+
start: -7
|
24 |
+
end: 3
|
25 |
+
tau: 1.0
|
26 |
+
inference_noise_scheduler:
|
27 |
+
start: -7
|
28 |
+
end: 3
|
29 |
+
tau: 1.0
|
30 |
+
interpolant: diffusion
|
31 |
+
dataset:
|
32 |
+
full_batch_size: 512
|
33 |
+
|
34 |
+
areas: []
|
35 |
+
|
36 |
+
experiment_name_suffix: small_sigmoid
|
configs/exp/iNaturalist_geoadalnmlp_r3_small_sigmoid_diffusion.yaml
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /dataset: inaturalist_emb
|
5 |
+
- override /model: emb_cond_cartesian
|
6 |
+
- override /model/network: geo_adaln_mlp
|
7 |
+
- override /model/train_noise_scheduler: sigmoid
|
8 |
+
- override /model/inference_noise_scheduler: sigmoid
|
9 |
+
- override /model/loss: ddpm
|
10 |
+
- _self_
|
11 |
+
|
12 |
+
model:
|
13 |
+
network:
|
14 |
+
depth: 12
|
15 |
+
dim: 256
|
16 |
+
optimizer:
|
17 |
+
optim:
|
18 |
+
lr: 8e-4
|
19 |
+
weight_decay: 0.1
|
20 |
+
loss:
|
21 |
+
cond_drop_rate: 0.1
|
22 |
+
train_noise_scheduler:
|
23 |
+
start: -7
|
24 |
+
end: 3
|
25 |
+
tau: 1.0
|
26 |
+
inference_noise_scheduler:
|
27 |
+
start: -7
|
28 |
+
end: 3
|
29 |
+
tau: 1.0
|
30 |
+
interpolant: diffusion
|
31 |
+
|
32 |
+
dataset:
|
33 |
+
full_batch_size: 512
|
34 |
+
|
35 |
+
areas: []
|
36 |
+
|
37 |
+
experiment_name_suffix: small_sigmoid
|
configs/exp/iNaturalist_geoadalnmlp_r3_small_sigmoid_flow.yaml
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /dataset: inaturalist_emb
|
5 |
+
- override /model: emb_cond_cartesian
|
6 |
+
- override /model/network: geo_adaln_mlp
|
7 |
+
- override /model/train_noise_scheduler: sigmoid
|
8 |
+
- override /model/inference_noise_scheduler: sigmoid
|
9 |
+
- override /model/loss: flow_matching
|
10 |
+
- override /model/val_sampler: flow_matching
|
11 |
+
- override /model/test_sampler: flow_matching
|
12 |
+
- _self_
|
13 |
+
|
14 |
+
model:
|
15 |
+
network:
|
16 |
+
depth: 12
|
17 |
+
dim: 256
|
18 |
+
optimizer:
|
19 |
+
optim:
|
20 |
+
lr: 8e-4
|
21 |
+
weight_decay: 0.1
|
22 |
+
loss:
|
23 |
+
cond_drop_rate: 0.1
|
24 |
+
train_noise_scheduler:
|
25 |
+
start: -7
|
26 |
+
end: 3
|
27 |
+
tau: 1.0
|
28 |
+
inference_noise_scheduler:
|
29 |
+
start: -7
|
30 |
+
end: 3
|
31 |
+
tau: 1.0
|
32 |
+
interpolant: flow_matching
|
33 |
+
|
34 |
+
dataset:
|
35 |
+
full_batch_size: 512
|
36 |
+
|
37 |
+
areas: []
|
38 |
+
|
39 |
+
experiment_name_suffix: small_sigmoid
|