File size: 894 Bytes
611d23b f63532b e682a6d f63532b e682a6d f63532b e682a6d 11a889e e682a6d 11a889e e682a6d f63532b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import streamlit as st
from transformers import pipeline
pipe=pipeline("sentiment-analysis")
text=st.text_area("enter the text:")
##x = st.slider('Select a value')
##st.write(x, 'squared is', x * x)
if text:
out=pipe(text)
st.json(out)
"""
from transformers import DetrFeatureExtractor, DetrForObjectDetection
from PIL import Image
import requests
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
st.write(url)
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = DetrFeatureExtractor.from_pretrained('facebook/detr-resnet-50')
model = DetrForObjectDetection.from_pretrained('facebook/detr-resnet-50')
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
# model predicts bounding boxes and corresponding COCO classes
logits = outputs.logits
bboxes = outputs.pred_boxes
if bboxes:
st.json(bboxes)
""" |