Spaces:
Runtime error
Runtime error
import argparse | |
import pandas as pd | |
import requests | |
from pygbif import occurrences as occ | |
from tqdm import tqdm | |
tqdm.pandas() | |
import os.path | |
def getFirstFamilyName(recordedBy): | |
firstFamilyName = None | |
parsed = bananompy.parse(recordedBy) | |
try: | |
firstFamilyName = parsed[0]['parsed'][0]['family'] | |
except: | |
pass | |
return firstFamilyName | |
def getFirstFamilyNames(recordedBy_l): | |
# post to bionomia | |
bionomia_parse_endpoint_url = "https://api.bionomia.net/parse.json" | |
data = dict() | |
data['names'] = '\r\n'.join(recordedBy_l) | |
r = requests.post(bionomia_parse_endpoint_url, data=data) | |
parsed_results = r.json() | |
results = dict() | |
for parsed_result in parsed_results: | |
try: | |
results[parsed_result['original']] = parsed_result['parsed'][0]['family'] | |
except: | |
results[parsed_result['original']] = None | |
return results | |
def getFirstFamilyNameBulk(df, | |
recordedByColName="recordedBy", | |
firstFamilyNameColName="recordedBy_first_familyname", | |
batchsize=500): | |
results = dict() | |
recordedBy_l = [] | |
for s in tqdm(df[recordedByColName].values): | |
if len(recordedBy_l) == batchsize: | |
# send it | |
results.update(getFirstFamilyNames(recordedBy_l)) | |
# clear for next iteration | |
recordedBy_l = [] | |
recordedBy_l.append(s) | |
if len(recordedBy_l) > 0: | |
results.update(getFirstFamilyNames(recordedBy_l)) | |
df[firstFamilyNameColName] = df[recordedByColName].map(results) | |
return df | |
GBIF_DOWNLOAD_DESCRIBE_URL_SIMPLE_CSV = 'https://api.gbif.org/v1/occurrence/download/describe/simpleCsv' | |
GBIF_DOWNLOAD_DESCRIBE_URL_DWCA = 'https://api.gbif.org/v1/occurrence/download/describe/dwca' | |
def getGbifDownloadColumnNames(download_format): | |
column_names = None | |
if download_format == 'SIMPLE_CSV': | |
r = requests.get(GBIF_DOWNLOAD_DESCRIBE_URL_SIMPLE_CSV) | |
columns_metadata = r.json() | |
column_names = [column_metadata['name'] for column_metadata in columns_metadata['fields']] | |
elif download_format == 'DWCA': | |
r = requests.get(GBIF_DOWNLOAD_DESCRIBE_URL_DWCA) | |
columns_metadata = r.json() | |
column_names = [column_metadata['name'] for column_metadata in columns_metadata['verbatim']['fields']] | |
return column_names | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument("data_dir") | |
parser.add_argument("download_id") | |
parser.add_argument("-c","--createcols", action='store_true') | |
parser.add_argument("-l","--limit", type=int) | |
parser.add_argument("outputfilename") | |
args = parser.parse_args() | |
# Determine format of datafile by accessing download metadata from GBIF API | |
gbif_metadata = occ.download_meta(key = args.download_id) | |
download_format = gbif_metadata['request']['format'] | |
# The GBIF download format determines: | |
# (1) the columns in the download, SIMPLE_CSV being a much restricted set | |
# of columns than DWCA | |
# (2) The name of the occurrence data file, SIMPLE_CSV : '[download_id].csv' | |
# DWCA : 'occurrence.txt' | |
inputfilename = None | |
column_names_simple_csv = getGbifDownloadColumnNames('SIMPLE_CSV') | |
column_names = None | |
if download_format == 'SIMPLE_CSV': | |
inputfilename = '{}.csv'.format(args.download_id) | |
column_names = column_names_simple_csv | |
elif download_format == 'DWCA': | |
inputfilename = 'occurrence.txt' | |
column_names_dwca = getGbifDownloadColumnNames('DWCA') | |
column_names = [column_name for column_name in column_names_dwca if column_name in column_names_simple_csv] | |
df = pd.read_csv(os.path.join(args.data_dir,inputfilename), | |
encoding='utf8', | |
keep_default_na=False, | |
on_bad_lines='skip', | |
sep='\t', | |
usecols=column_names, | |
nrows=args.limit) | |
if args.createcols: | |
# Extract unique recordedBy values | |
df_rb = df[['recordedBy']].drop_duplicates() | |
df_rb = getFirstFamilyNameBulk(df_rb) | |
#df_rb['recordedBy_first_familyname'] = df_rb.recordedBy.progress_apply(getFirstFamilyName) | |
# Apply back to main dataframe | |
df = pd.merge(left = df, right=df_rb, left_on='recordedBy', right_on='recordedBy', how='left') | |
# Add column holding collector name and number | |
mask = (df.recordNumber.notnull()) | |
df.loc[mask,'collectorNameAndNumber']=df[mask].apply(lambda row: '{} {}'.format(row['recordedBy_first_familyname'],row['recordNumber']),axis=1) | |
df.to_csv(os.path.join(args.data_dir,args.outputfilename), index=False, sep=',') |