Spaces:
Build error
Build error
import streamlit as st | |
from variables import * | |
from optimum.onnxruntime import ORTModelForSequenceClassification | |
from transformers import pipeline, AutoTokenizer | |
from optimum.pipelines import pipeline | |
import tweepy | |
import pandas as pd | |
import numpy as np | |
import plotly_express as px | |
import plotly.graph_objects as go | |
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode | |
st.set_page_config( | |
page_title="Live FinTwitter Analysis", | |
page_icon="π", | |
layout="wide", | |
) | |
st.sidebar.header("Sentiment Analysis Score") | |
def load_models(): | |
'''load sentimant and topic clssification models''' | |
sent_pipe = pipeline(task,model=sent_model_id, tokenizer=sent_model_id) | |
topic_pipe = pipeline(task, model=topic_model_id, tokenizer=topic_model_id) | |
return sent_pipe, topic_pipe | |
def process_tweets(df,df_users): | |
'''process tweets into a dataframe''' | |
df['author'] = df['author'].astype(np.int64) | |
df_merged = df.merge(df_users, on='author') | |
tweet_list = df_merged['tweet'].tolist() | |
sentiment, topic = pd.DataFrame(sentiment_classifier(tweet_list)), pd.DataFrame(topic_classifier(tweet_list)) | |
sentiment.rename(columns={'score':'sentiment_confidence','label':'sentiment'}, inplace=True) | |
topic.rename(columns={'score':'topic_confidence','label':'topic'}, inplace=True) | |
df_group = pd.concat([df_merged,sentiment,topic],axis=1) | |
df_group[['sentiment_confidence','topic_confidence']] = df_group[['sentiment_confidence','topic_confidence']].round(2).mul(100) | |
df_tweets = df_group[['creation_time','username','tweet','sentiment','topic','sentiment_confidence','topic_confidence']] | |
df_tweets = df_tweets.sort_values(by=['creation_time'],ascending=False) | |
return df_tweets | |
sentiment_classifier, topic_classifier = load_models() | |
st.title('Live FinTwitter Sentiment & Topic Analysis with Tweepy and Transformers') | |
st.markdown( | |
""" | |
This app uses Tweepy to extract tweets from twitter based on a list of popular accounts that tweet about markets/finance: | |
- The stream of tweets is processed via HuggingFace models for finance tweet sentiment and topic analysis: | |
- [Topic Classification](https://huggingface.co/nickmuchi/finbert-tone-finetuned-finance-topic-classification) | |
- [Sentiment Analysis](https://huggingface.co/nickmuchi/finbert-tone-finetuned-fintwitter-classification) | |
- The resulting sentiments and corresponding tweets are displayed, with graphs tracking the live sentiment and topics of financial market tweets in the Visualisation tab. | |
""" | |
) | |
refresh_stream = st.button('Refresh Stream') | |
if "update_but" not in st.session_state: | |
st.session_state.update_but = False | |
if refresh_stream or st.session_state.update_but: | |
st.session_state.update_but = True | |
client = tweepy.Client(CONFIG['bearer_token'], wait_on_rate_limit=True) | |
users = [] | |
all_tweets = [] | |
for res in tweepy.Paginator(client.get_list_tweets, | |
id="1083517925049266176", | |
user_fields=['username'], | |
tweet_fields=['created_at','text'], | |
expansions=['author_id'], | |
max_results=100): | |
all_tweets.append(res) | |
with st.spinner('Generating sentiment and topic classification of tweets...'): | |
tweets = [response.data for response in all_tweets] | |
users = [response.includes['users'] for response in all_tweets] | |
flat_users = [x for i in users for x in i] | |
flat_tweets = [x for i in tweets for x in i] | |
data = [(tweet.data['author_id'],tweet.data['text'],tweet.data['created_at']) for tweet in flat_tweets] | |
df = pd.DataFrame(data,columns=['author','tweet','creation_time']) | |
df['tweet'] = df['tweet'].replace(r'https?://\S+', '', regex=True).replace(r'www\S+', '', regex=True) | |
users = client.get_users(ids=df['author'].unique().tolist()) | |
df_users = pd.DataFrame(data=list(set([(user.id,user.username) for user in users.data])),columns=['author','username']) | |
df_tweets = process_tweets(df,df_users) | |
st.session_state['tdf'] = df_tweets | |
with st.container(): | |
st.write("Table of Influential FinTweets") | |
gb = GridOptionsBuilder.from_dataframe(df_tweets) | |
gb.configure_pagination(paginationPageSize=30,paginationAutoPageSize=False) #Add pagination | |
gb.configure_side_bar() #Add a sidebar | |
gb.configure_selection('multiple', use_checkbox=True, groupSelectsChildren="Group checkbox select children") | |
gb.configure_column('tweet',wrapText=True,autoHeight=True)#Enable multi-row selection | |
gridOptions = gb.build() | |
AgGrid( | |
df_tweets, | |
gridOptions=gridOptions, | |
data_return_mode='AS_INPUT', | |
update_mode='MODEL_CHANGED', | |
fit_columns_on_grid_load=False, | |
enable_enterprise_modules=True, | |
theme='streamlit', #Add theme color to the table | |
height=550, | |
width='100%' | |
) | |
## Display sentiment score | |
pos_perc = df_tweets[df_tweets['sentiment']=='Bullish'].count()[0]*100/df_tweets.shape[0] | |
neg_perc = df_tweets[df_tweets['sentiment']=='Bearish'].count()[0]*100/df_tweets.shape[0] | |
neu_perc = df_tweets[df_tweets['sentiment']=='Neutral'].count()[0]*100/df_tweets.shape[0] | |
sentiment_score = neu_perc+pos_perc-neg_perc | |
fig_1 = go.Figure() | |
fig_1.add_trace(go.Indicator( | |
mode = "delta", | |
value = sentiment_score, | |
domain = {'row': 1, 'column': 1})) | |
fig_1.update_layout( | |
template = {'data' : {'indicator': [{ | |
'title': {'text': "Sentiment Score"}, | |
'mode' : "number+delta+gauge", | |
'delta' : {'reference': 50}}] | |
}}, | |
autosize=False, | |
width=250, | |
height=250, | |
margin=dict( | |
l=5, | |
r=5, | |
b=5, | |
pad=2 | |
) | |
) | |
with st.sidebar: | |
st.plotly_chart(fig_1) | |
st.markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-fintweet-sentiment-analysis)") |