Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,38 @@
|
|
1 |
-
import
|
2 |
-
import google.generativeai as genai
|
3 |
-
from yolov5 import YOLOv5
|
4 |
from PIL import Image
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
outputs="text",
|
42 |
-
title="Générateur de Recettes par Ingrédients",
|
43 |
-
description="Téléchargez une image d'ingrédients pour générer une recette.",
|
44 |
-
)
|
45 |
-
|
46 |
-
# Lancer l'application
|
47 |
-
if __name__ == "__main__":
|
48 |
-
iface.launch()
|
|
|
1 |
+
from transformers import AutoFeatureExtractor, AutoModel
|
|
|
|
|
2 |
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
+
|
6 |
+
# Charger le modèle de vision par ordinateur
|
7 |
+
model_name = "google/efficientnet-b0"
|
8 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
9 |
+
model = AutoModel.from_pretrained(model_name)
|
10 |
+
|
11 |
+
# Charger et prétraiter l'image
|
12 |
+
image_path = "path/to/your/image.jpg"
|
13 |
+
image = Image.open(image_path)
|
14 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
15 |
+
|
16 |
+
# Passer l'image à travers le modèle
|
17 |
+
with torch.no_grad():
|
18 |
+
outputs = model(**inputs)
|
19 |
+
|
20 |
+
# Extraire les caractéristiques de l'image
|
21 |
+
features = outputs.last_hidden_state.mean(dim=1)
|
22 |
+
|
23 |
+
# Charger le modèle de génération de texte
|
24 |
+
model_name = "t5-small"
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
26 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
27 |
+
|
28 |
+
# Convertir les caractéristiques de l'image en texte
|
29 |
+
input_text = "Generate a recipe based on the following image features: " + str(features.tolist())
|
30 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
31 |
+
|
32 |
+
# Générer la recette
|
33 |
+
with torch.no_grad():
|
34 |
+
outputs = model.generate(**inputs)
|
35 |
+
|
36 |
+
# Décoder la recette générée
|
37 |
+
recipe = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
38 |
+
print(recipe)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|