ngthanhtinqn commited on
Commit
6b44c63
β€’
1 Parent(s): c199bab

fix text prompt

Browse files
Files changed (2) hide show
  1. app.py +1 -1
  2. demo.py +3 -8
app.py CHANGED
@@ -18,7 +18,7 @@ hence you can get better predictions by querying the image with text templates u
18
  demo = gr.Interface(
19
  query_image,
20
  inputs=[gr.Image(), "text"],
21
- outputs="image",
22
  title="Zero-Shot Object Detection with OWL-ViT",
23
  description=description,
24
  examples=[
 
18
  demo = gr.Interface(
19
  query_image,
20
  inputs=[gr.Image(), "text"],
21
+ outputs=["image", "image"],
22
  title="Zero-Shot Object Detection with OWL-ViT",
23
  description=description,
24
  examples=[
demo.py CHANGED
@@ -87,7 +87,7 @@ def query_image(img, text_prompt):
87
  pil_img = Image.fromarray(np.uint8(img)).convert('RGB')
88
 
89
  text_prompt = text_prompt
90
- texts = text_prompt.split(",")
91
 
92
  box_threshold = 0.0
93
 
@@ -115,11 +115,6 @@ def query_image(img, text_prompt):
115
  # boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"]
116
 
117
 
118
- # Print detected objects and rescaled box coordinates
119
- # for box, score, label in zip(boxes, scores, labels):
120
- # box = [round(i, 2) for i in box.tolist()]
121
- # print(f"Detected {text[label]} with confidence {round(score.item(), 3)} at location {box}")
122
-
123
  boxes = boxes.cpu().detach().numpy()
124
  normalized_boxes = copy.deepcopy(boxes)
125
 
@@ -174,5 +169,5 @@ def query_image(img, text_prompt):
174
  # grounded results
175
  image_with_box = plot_boxes_to_image(pil_img, pred_dict)[0]
176
 
177
- # return owlvit_segment_image, image_with_box
178
- return owlvit_segment_image
 
87
  pil_img = Image.fromarray(np.uint8(img)).convert('RGB')
88
 
89
  text_prompt = text_prompt
90
+ texts = [text_prompt.split(",")]
91
 
92
  box_threshold = 0.0
93
 
 
115
  # boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"]
116
 
117
 
 
 
 
 
 
118
  boxes = boxes.cpu().detach().numpy()
119
  normalized_boxes = copy.deepcopy(boxes)
120
 
 
169
  # grounded results
170
  image_with_box = plot_boxes_to_image(pil_img, pred_dict)[0]
171
 
172
+ return owlvit_segment_image, image_with_box
173
+ # return owlvit_segment_image