Spaces:
Runtime error
Runtime error
File size: 5,777 Bytes
127eb07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import argparse
import os
import copy
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
import PIL
# OwlViT Detection
from transformers import OwlViTProcessor, OwlViTForObjectDetection
# segment anything
from segment_anything import build_sam, SamPredictor
import cv2
import numpy as np
import matplotlib.pyplot as plt
import gc
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
def plot_boxes_to_image(image_pil, tgt):
H, W = tgt["size"]
boxes = tgt["boxes"]
labels = tgt["labels"]
assert len(boxes) == len(labels), "boxes and labels must have same length"
draw = ImageDraw.Draw(image_pil)
mask = Image.new("L", image_pil.size, 0)
mask_draw = ImageDraw.Draw(mask)
# draw boxes and masks
for box, label in zip(boxes, labels):
# random color
color = tuple(np.random.randint(0, 255, size=3).tolist())
# draw
x0, y0, x1, y1 = box
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
draw.text((x0, y0), str(label), fill=color)
font = ImageFont.load_default()
if hasattr(font, "getbbox"):
bbox = draw.textbbox((x0, y0), str(label), font)
else:
w, h = draw.textsize(str(label), font)
bbox = (x0, y0, w + x0, y0 + h)
# bbox = draw.textbbox((x0, y0), str(label))
draw.rectangle(bbox, fill=color)
draw.text((x0, y0), str(label), fill="white")
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6)
return image_pil, mask
# Use GPU if available
if torch.cuda.is_available():
device = torch.device("cuda:4")
else:
device = torch.device("cpu")
# load OWL-ViT model
owlvit_model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32").to(device)
owlvit_model.eval()
owlvit_processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32")
# run segment anything (SAM)
sam_predictor = SamPredictor(build_sam(checkpoint="./sam_vit_h_4b8939.pth"))
def query_image(img, text_prompt, box_threshold):
# load image
if not isinstance(img, PIL.Image.Image):
pil_img = Image.fromarray(np.uint8(img)).convert('RGB')
text_prompt = text_prompt
texts = text_prompt.split(",")
box_threshold = box_threshold
# run object detection model
with torch.no_grad():
inputs = owlvit_processor(text=texts, images=pil_img, return_tensors="pt").to(device)
outputs = owlvit_model(**inputs)
# Target image sizes (height, width) to rescale box predictions [batch_size, 2]
target_sizes = torch.Tensor([pil_img.size[::-1]])
# Convert outputs (bounding boxes and class logits) to COCO API
results = owlvit_processor.post_process_object_detection(outputs=outputs, threshold=box_threshold, target_sizes=target_sizes.to(device))
scores = torch.sigmoid(outputs.logits)
topk_scores, topk_idxs = torch.topk(scores, k=1, dim=1)
i = 0 # Retrieve predictions for the first image for the corresponding text queries
text = texts[i]
topk_idxs = topk_idxs.squeeze(1).tolist()
topk_boxes = results[i]['boxes'][topk_idxs]
topk_scores = topk_scores.view(len(text), -1)
topk_labels = results[i]["labels"][topk_idxs]
boxes, scores, labels = topk_boxes, topk_scores, topk_labels
# boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"]
# Print detected objects and rescaled box coordinates
# for box, score, label in zip(boxes, scores, labels):
# box = [round(i, 2) for i in box.tolist()]
# print(f"Detected {text[label]} with confidence {round(score.item(), 3)} at location {box}")
boxes = boxes.cpu().detach().numpy()
normalized_boxes = copy.deepcopy(boxes)
# # visualize pred
size = pil_img.size
pred_dict = {
"boxes": normalized_boxes,
"size": [size[1], size[0]], # H, W
"labels": [text[idx] for idx in labels]
}
# release the OWL-ViT
# owlvit_model.cpu()
# del owlvit_model
gc.collect()
torch.cuda.empty_cache()
# run segment anything (SAM)
open_cv_image = np.array(pil_img)
image = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB)
sam_predictor.set_image(image)
H, W = size[1], size[0]
for i in range(boxes.shape[0]):
boxes[i] = torch.Tensor(boxes[i])
boxes = torch.tensor(boxes, device=sam_predictor.device)
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes, image.shape[:2])
masks, _, _ = sam_predictor.predict_torch(
point_coords = None,
point_labels = None,
boxes = transformed_boxes,
multimask_output = False,
)
plt.figure(figsize=(10, 10))
plt.imshow(image)
for mask in masks:
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
for box in boxes:
show_box(box.numpy(), plt.gca())
plt.axis('off')
import io
buf = io.BytesIO()
plt.savefig(buf)
buf.seek(0)
owlvit_segment_image = Image.open(buf).convert('RGB')
# grounded results
image_with_box = plot_boxes_to_image(pil_img, pred_dict)[0]
# return owlvit_segment_image, image_with_box
return owlvit_segment_image
|