Spaces:
Running
Running
import streamlit as st | |
from openai import OpenAI | |
import os | |
import sys | |
from langchain.callbacks import StreamlitCallbackHandler | |
from dotenv import load_dotenv, dotenv_values | |
load_dotenv() | |
if 'key' not in st.session_state: | |
st.session_state['key'] = 'value' | |
# initialize the client but point it to TGI | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1", | |
api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN')#"hf_xxx" # Replace with your token | |
) | |
#Create supported models | |
model_links ={ | |
"Mistral":"mistralai/Mistral-7B-Instruct-v0.2", | |
"Gemma":"google/gemma-7b-it" | |
} | |
# Define the available models | |
# models = ["Mistral", "Gemma"] | |
models =[key for key in model_links.keys()] | |
# Create the sidebar with the dropdown for model selection | |
selected_model = st.sidebar.selectbox("Select Model", models) | |
#Pull in the model we want to use | |
repo_id = model_links[selected_model] | |
st.title(f'ChatBot Using {selected_model}') | |
# Set a default model | |
if selected_model not in st.session_state: | |
st.session_state[selected_model] = model_links[selected_model] | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Display chat messages from history on app rerun | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Accept user input | |
if prompt := st.chat_input("What is up?"): | |
# Display user message in chat message container | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
# Display assistant response in chat message container | |
with st.chat_message("assistant"): | |
st_callback = StreamlitCallbackHandler(st.container()) | |
stream = client.chat.completions.create( | |
model=model_links[selected_model], | |
messages=[ | |
{"role": m["role"], "content": m["content"]} | |
for m in st.session_state.messages | |
], | |
temperature=0.5, | |
stream=True, | |
max_tokens=3000, | |
) | |
response = st.write_stream(stream) | |
st.session_state.messages.append({"role": "assistant", "content": response}) |