Spaces:
Build error
Build error
File size: 9,166 Bytes
699163a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import gc
import json
import logging
import os
import re
import time
import zipfile
from pathlib import Path
import numpy as np
import torch
import transformers
from accelerate import infer_auto_device_map, init_empty_weights
from transformers import (AutoConfig, AutoModel, AutoModelForCausalLM,
AutoModelForSeq2SeqLM, AutoTokenizer,
BitsAndBytesConfig, LlamaTokenizer)
import modules.shared as shared
from modules import llama_attn_hijack
transformers.logging.set_verbosity_error()
local_rank = None
if shared.args.deepspeed:
import deepspeed
from transformers.deepspeed import (HfDeepSpeedConfig,
is_deepspeed_zero3_enabled)
from modules.deepspeed_parameters import generate_ds_config
# Distributed setup
local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0"))
world_size = int(os.getenv("WORLD_SIZE", "1"))
torch.cuda.set_device(local_rank)
deepspeed.init_distributed()
ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
# Some models require special treatment in various parts of the code.
# This function detects those models
def find_model_type(model_name):
path_to_model = Path(f'{shared.args.model_dir}/{model_name}')
if not path_to_model.exists():
return 'None'
model_name_lower = model_name.lower()
if 'rwkv-' in model_name_lower:
return 'rwkv'
elif len(list(path_to_model.glob('*ggml*.bin'))) > 0:
return 'llamacpp'
elif re.match('.*ggml.*\.bin', model_name_lower):
return 'llamacpp'
elif 'chatglm' in model_name_lower:
return 'chatglm'
elif 'galactica' in model_name_lower:
return 'galactica'
elif 'llava' in model_name_lower:
return 'llava'
elif 'oasst' in model_name_lower:
return 'oasst'
elif any((k in model_name_lower for k in ['gpt4chan', 'gpt-4chan'])):
return 'gpt4chan'
else:
config = AutoConfig.from_pretrained(path_to_model, trust_remote_code=shared.args.trust_remote_code)
# Not a "catch all", but fairly accurate
if config.to_dict().get("is_encoder_decoder", False):
return 'HF_seq2seq'
else:
return 'HF_generic'
def load_model(model_name):
logging.info(f"Loading {model_name}...")
t0 = time.time()
shared.model_type = find_model_type(model_name)
if shared.model_type == 'None':
logging.error('The path to the model does not exist. Exiting.')
return None, None
if shared.args.autogptq:
load_func = AutoGPTQ_loader
elif shared.args.wbits > 0:
load_func = GPTQ_loader
elif shared.model_type == 'llamacpp':
load_func = llamacpp_loader
elif shared.model_type == 'rwkv':
load_func = RWKV_loader
elif shared.args.flexgen:
load_func = flexgen_loader
else:
load_func = huggingface_loader
output = load_func(model_name)
if type(output) is tuple:
model, tokenizer = output
else:
model = output
tokenizer = load_tokenizer(model_name, model)
# Hijack attention with xformers
if any((shared.args.xformers, shared.args.sdp_attention)):
llama_attn_hijack.hijack_llama_attention()
logging.info(f"Loaded the model in {(time.time()-t0):.2f} seconds.\n")
return model, tokenizer
def load_tokenizer(model_name, model):
tokenizer = None
if shared.model_type == 'gpt4chan' and Path(f"{shared.args.model_dir}/gpt-j-6B/").exists():
tokenizer = AutoTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/gpt-j-6B/"))
elif type(model) is transformers.LlamaForCausalLM:
# Try to load an universal LLaMA tokenizer
if shared.model_type not in ['llava', 'oasst']:
for p in [Path(f"{shared.args.model_dir}/llama-tokenizer/"), Path(f"{shared.args.model_dir}/oobabooga_llama-tokenizer/")]:
if p.exists():
logging.info(f"Loading the universal LLaMA tokenizer from {p}...")
tokenizer = LlamaTokenizer.from_pretrained(p, clean_up_tokenization_spaces=True)
return tokenizer
# Otherwise, load it from the model folder and hope that these
# are not outdated tokenizer files.
tokenizer = LlamaTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/{model_name}/"), clean_up_tokenization_spaces=True)
try:
tokenizer.eos_token_id = 2
tokenizer.bos_token_id = 1
tokenizer.pad_token_id = 0
except:
pass
else:
path_to_model = Path(f"{shared.args.model_dir}/{model_name}/")
if path_to_model.exists():
tokenizer = AutoTokenizer.from_pretrained(path_to_model, trust_remote_code=shared.args.trust_remote_code)
return tokenizer
def flexgen_loader(model_name):
from flexgen.flex_opt import CompressionConfig, ExecutionEnv, OptLM, Policy
# Initialize environment
env = ExecutionEnv.create(shared.args.disk_cache_dir)
# Offloading policy
policy = Policy(1, 1,
shared.args.percent[0], shared.args.percent[1],
shared.args.percent[2], shared.args.percent[3],
shared.args.percent[4], shared.args.percent[5],
overlap=True, sep_layer=True, pin_weight=shared.args.pin_weight,
cpu_cache_compute=False, attn_sparsity=1.0,
compress_weight=shared.args.compress_weight,
comp_weight_config=CompressionConfig(
num_bits=4, group_size=64,
group_dim=0, symmetric=False),
compress_cache=False,
comp_cache_config=CompressionConfig(
num_bits=4, group_size=64,
group_dim=2, symmetric=False))
model = OptLM(f"facebook/{model_name}", env, shared.args.model_dir, policy)
return model
def RWKV_loader(model_name):
from modules.RWKV import RWKVModel, RWKVTokenizer
model = RWKVModel.from_pretrained(Path(f'{shared.args.model_dir}/{model_name}'), dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16", device="cpu" if shared.args.cpu else "cuda")
tokenizer = RWKVTokenizer.from_pretrained(Path(shared.args.model_dir))
return model, tokenizer
def llamacpp_loader(model_name):
from modules.llamacpp_model import LlamaCppModel
path = Path(f'{shared.args.model_dir}/{model_name}')
if path.is_file():
model_file = path
else:
model_file = list(Path(f'{shared.args.model_dir}/{model_name}').glob('*ggml*.bin'))[0]
logging.info(f"llama.cpp weights detected: {model_file}\n")
model, tokenizer = LlamaCppModel.from_pretrained(model_file)
return model, tokenizer
def GPTQ_loader(model_name):
# Monkey patch
if shared.args.monkey_patch:
logging.warning("Applying the monkey patch for using LoRAs in 4-bit mode. It may cause undefined behavior outside its intended scope.")
from modules.monkey_patch_gptq_lora import load_model_llama
model, _ = load_model_llama(model_name)
# No monkey patch
else:
import modules.GPTQ_loader
model = modules.GPTQ_loader.load_quantized(model_name)
return model
def AutoGPTQ_loader(model_name):
import modules.AutoGPTQ_loader
return modules.AutoGPTQ_loader.load_quantized(model_name)
def get_max_memory_dict():
max_memory = {}
return max_memory if len(max_memory) > 0 else None
def clear_torch_cache():
gc.collect()
if not shared.args.cpu:
torch.cuda.empty_cache()
def unload_model():
shared.model = shared.tokenizer = None
clear_torch_cache()
def reload_model():
unload_model()
shared.model, shared.tokenizer = load_model(shared.model_name)
def load_soft_prompt(name):
if name == 'None':
shared.soft_prompt = False
shared.soft_prompt_tensor = None
else:
with zipfile.ZipFile(Path(f'softprompts/{name}.zip')) as zf:
zf.extract('tensor.npy')
zf.extract('meta.json')
j = json.loads(open('meta.json', 'r').read())
logging.info(f"\nLoading the softprompt \"{name}\".")
for field in j:
if field != 'name':
if type(j[field]) is list:
logging.info(f"{field}: {', '.join(j[field])}")
else:
logging.info(f"{field}: {j[field]}")
logging.info()
tensor = np.load('tensor.npy')
Path('tensor.npy').unlink()
Path('meta.json').unlink()
tensor = torch.Tensor(tensor).to(device=shared.model.device, dtype=shared.model.dtype)
tensor = torch.reshape(tensor, (1, tensor.shape[0], tensor.shape[1]))
shared.soft_prompt = True
shared.soft_prompt_tensor = tensor
return name
|