Spaces:
Build error
Build error
File size: 10,414 Bytes
8ea1e8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
'''
Downloads models from Hugging Face to models/model-name.
Example:
python download-model.py facebook/opt-1.3b
'''
import argparse
import base64
import datetime
import hashlib
import json
import re
import sys
from pathlib import Path
import requests
import tqdm
from tqdm.contrib.concurrent import thread_map
def select_model_from_default_options():
models = {
"OPT 6.7B": ("facebook", "opt-6.7b", "main"),
"OPT 2.7B": ("facebook", "opt-2.7b", "main"),
"OPT 1.3B": ("facebook", "opt-1.3b", "main"),
"OPT 350M": ("facebook", "opt-350m", "main"),
"GALACTICA 6.7B": ("facebook", "galactica-6.7b", "main"),
"GALACTICA 1.3B": ("facebook", "galactica-1.3b", "main"),
"GALACTICA 125M": ("facebook", "galactica-125m", "main"),
"Pythia-6.9B-deduped": ("EleutherAI", "pythia-6.9b-deduped", "main"),
"Pythia-2.8B-deduped": ("EleutherAI", "pythia-2.8b-deduped", "main"),
"Pythia-1.4B-deduped": ("EleutherAI", "pythia-1.4b-deduped", "main"),
"Pythia-410M-deduped": ("EleutherAI", "pythia-410m-deduped", "main"),
}
choices = {}
print("Select the model that you want to download:\n")
for i, name in enumerate(models):
char = chr(ord('A') + i)
choices[char] = name
print(f"{char}) {name}")
char_hugging = chr(ord('A') + len(models))
print(f"{char_hugging}) Manually specify a Hugging Face model")
char_exit = chr(ord('A') + len(models) + 1)
print(f"{char_exit}) Do not download a model")
print()
print("Input> ", end='')
choice = input()[0].strip().upper()
if choice == char_exit:
exit()
elif choice == char_hugging:
print("""\nType the name of your desired Hugging Face model in the format organization/name.
Examples:
facebook/opt-1.3b
EleutherAI/pythia-1.4b-deduped
""")
print("Input> ", end='')
model = input()
branch = "main"
else:
arr = models[choices[choice]]
model = f"{arr[0]}/{arr[1]}"
branch = arr[2]
return model, branch
def sanitize_model_and_branch_names(model, branch):
if model[-1] == '/':
model = model[:-1]
if branch is None:
branch = "main"
else:
pattern = re.compile(r"^[a-zA-Z0-9._-]+$")
if not pattern.match(branch):
raise ValueError("Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.")
return model, branch
def get_download_links_from_huggingface(model, branch, text_only=False):
base = "https://huggingface.co"
page = f"/api/models/{model}/tree/{branch}"
cursor = b""
links = []
sha256 = []
classifications = []
has_pytorch = False
has_pt = False
has_ggml = False
has_safetensors = False
is_lora = False
while True:
url = f"{base}{page}" + (f"?cursor={cursor.decode()}" if cursor else "")
r = requests.get(url)
r.raise_for_status()
content = r.content
dict = json.loads(content)
if len(dict) == 0:
break
for i in range(len(dict)):
fname = dict[i]['path']
if not is_lora and fname.endswith(('adapter_config.json', 'adapter_model.bin')):
is_lora = True
is_pytorch = re.match("(pytorch|adapter)_model.*\.bin", fname)
is_safetensors = re.match(".*\.safetensors", fname)
is_pt = re.match(".*\.pt", fname)
is_ggml = re.match(".*ggml.*\.bin", fname)
is_tokenizer = re.match("(tokenizer|ice).*\.model", fname)
is_text = re.match(".*\.(txt|json|py|md)", fname) or is_tokenizer
if any((is_pytorch, is_safetensors, is_pt, is_ggml, is_tokenizer, is_text)):
if 'lfs' in dict[i]:
sha256.append([fname, dict[i]['lfs']['oid']])
if is_text:
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
classifications.append('text')
continue
if not text_only:
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
if is_safetensors:
has_safetensors = True
classifications.append('safetensors')
elif is_pytorch:
has_pytorch = True
classifications.append('pytorch')
elif is_pt:
has_pt = True
classifications.append('pt')
elif is_ggml:
has_ggml = True
classifications.append('ggml')
cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50'
cursor = base64.b64encode(cursor)
cursor = cursor.replace(b'=', b'%3D')
# If both pytorch and safetensors are available, download safetensors only
if (has_pytorch or has_pt) and has_safetensors:
for i in range(len(classifications) - 1, -1, -1):
if classifications[i] in ['pytorch', 'pt']:
links.pop(i)
return links, sha256, is_lora
def get_output_folder(model, branch, is_lora, base_folder=None):
if base_folder is None:
base_folder = 'models' if not is_lora else 'loras'
output_folder = f"{'_'.join(model.split('/')[-2:])}"
if branch != 'main':
output_folder += f'_{branch}'
output_folder = Path(base_folder) / output_folder
return output_folder
def get_single_file(url, output_folder, start_from_scratch=False):
filename = Path(url.rsplit('/', 1)[1])
output_path = output_folder / filename
if output_path.exists() and not start_from_scratch:
# Check if the file has already been downloaded completely
r = requests.get(url, stream=True)
total_size = int(r.headers.get('content-length', 0))
if output_path.stat().st_size >= total_size:
return
# Otherwise, resume the download from where it left off
headers = {'Range': f'bytes={output_path.stat().st_size}-'}
mode = 'ab'
else:
headers = {}
mode = 'wb'
r = requests.get(url, stream=True, headers=headers)
with open(output_path, mode) as f:
total_size = int(r.headers.get('content-length', 0))
block_size = 1024
with tqdm.tqdm(total=total_size, unit='iB', unit_scale=True, bar_format='{l_bar}{bar}| {n_fmt:6}/{total_fmt:6} {rate_fmt:6}') as t:
for data in r.iter_content(block_size):
t.update(len(data))
f.write(data)
def start_download_threads(file_list, output_folder, start_from_scratch=False, threads=1):
thread_map(lambda url: get_single_file(url, output_folder, start_from_scratch=start_from_scratch), file_list, max_workers=threads, disable=True)
def download_model_files(model, branch, links, sha256, output_folder, start_from_scratch=False, threads=1):
# Creating the folder and writing the metadata
if not output_folder.exists():
output_folder.mkdir()
with open(output_folder / 'huggingface-metadata.txt', 'w') as f:
f.write(f'url: https://huggingface.co/{model}\n')
f.write(f'branch: {branch}\n')
f.write(f'download date: {str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))}\n')
sha256_str = ''
for i in range(len(sha256)):
sha256_str += f' {sha256[i][1]} {sha256[i][0]}\n'
if sha256_str != '':
f.write(f'sha256sum:\n{sha256_str}')
# Downloading the files
print(f"Downloading the model to {output_folder}")
start_download_threads(links, output_folder, start_from_scratch=start_from_scratch, threads=threads)
def check_model_files(model, branch, links, sha256, output_folder):
# Validate the checksums
validated = True
for i in range(len(sha256)):
fpath = (output_folder / sha256[i][0])
if not fpath.exists():
print(f"The following file is missing: {fpath}")
validated = False
continue
with open(output_folder / sha256[i][0], "rb") as f:
bytes = f.read()
file_hash = hashlib.sha256(bytes).hexdigest()
if file_hash != sha256[i][1]:
print(f'Checksum failed: {sha256[i][0]} {sha256[i][1]}')
validated = False
else:
print(f'Checksum validated: {sha256[i][0]} {sha256[i][1]}')
if validated:
print('[+] Validated checksums of all model files!')
else:
print('[-] Invalid checksums. Rerun download-model.py with the --clean flag.')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('MODEL', type=str, default=None, nargs='?')
parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.')
parser.add_argument('--threads', type=int, default=1, help='Number of files to download simultaneously.')
parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).')
parser.add_argument('--output', type=str, default=None, help='The folder where the model should be saved.')
parser.add_argument('--clean', action='store_true', help='Does not resume the previous download.')
parser.add_argument('--check', action='store_true', help='Validates the checksums of model files.')
args = parser.parse_args()
branch = args.branch
model = args.MODEL
if model is None:
model, branch = select_model_from_default_options()
# Cleaning up the model/branch names
try:
model, branch = sanitize_model_and_branch_names(model, branch)
except ValueError as err_branch:
print(f"Error: {err_branch}")
sys.exit()
# Getting the download links from Hugging Face
links, sha256, is_lora = get_download_links_from_huggingface(model, branch, text_only=args.text_only)
# Getting the output folder
output_folder = get_output_folder(model, branch, is_lora, base_folder=args.output)
if args.check:
# Check previously downloaded files
check_model_files(model, branch, links, sha256, output_folder)
else:
# Download files
download_model_files(model, branch, links, sha256, output_folder, threads=args.threads)
|