Spaces:
Runtime error
Runtime error
File size: 11,262 Bytes
b3bea79 8fc78cd b3bea79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import gradio as gr
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline
from datasets import load_dataset
from PIL import Image
import re
model_id = "CompVis/stable-diffusion-v1-4"
device = "cuda"
pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=True, revision="fp16", torch_dtype=torch.float16)
pipe = pipe.to(device)
word_list_dataset = load_dataset("stabilityai/word-list", data_files="list.txt", use_auth_token=True)
word_list = word_list_dataset["train"]['text']
def infer(prompt, samples, steps, scale, seed):
for filter in word_list:
if re.search(rf"\b{filter}\b", prompt):
raise Exception("Unsafe content found. Please try again with different prompts.")
generator = torch.Generator(device=device).manual_seed(seed)
with autocast("cuda"):
images_list = pipe(
[prompt] * samples,
num_inference_steps=steps,
guidance_scale=scale,
generator=generator,
)
images = []
safe_image = Image.open(r"unsafe.png")
for i, image in enumerate(images_list["sample"]):
if(images_list["nsfw_content_detected"][i]):
images.append(safe_image)
else:
images.append(image)
return images
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: white;
border-color: black;
background: black;
}
input[type='range'] {
accent-color: black;
}
.dark input[type='range'] {
accent-color: #dfdfdf;
}
.container {
max-width: 1070px;
margin: auto;
padding-top: 2rem;
}
#gallery {
min-height: 22rem;
margin-bottom: 15px;
border-bottom-right-radius: .5rem !important;
border-bottom-left-radius: .5rem !important;
}
#gallery>div>.h-full {
min-height: 20rem;
}
.details:hover {
text-decoration: underline;
}
.gr-button {
white-space: nowrap;
}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
#advanced-btn {
font-size: .7rem !important;
line-height: 19px;
margin-top: 24px;
margin-bottom: 12px;
padding: 2px 8px;
border-radius: 14px !important;
}
#advanced-options {
display: none;
margin-bottom: 20px;
}
.footer {
margin-bottom: 25px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
.acknowledgments h4{
margin: 1.25em 0 .25em 0;
font-weight: bold;
font-size: 115%;
}
"""
block = gr.Blocks(css=css)
examples = [
[
'A high tech solarpunk utopia in the Amazon rainforest',
3,
40,
7.5,
1024,
],
[
'A pikachu fine dining with a view to the Eiffel Tower',
3,
40,
7,
1024,
],
[
'A mecha robot in a favela in expressionist style',
3,
40,
7,
1024,
],
[
'an insect robot preparing a delicious meal',
3,
40,
7,
1024,
],
[
"A small cabin on top of a snowy mountain in the style of disney, arstation",
3,
40,
7,
1024,
],
]
with block:
gr.HTML(
"""
<div style="text-align: center;">
<div style="display: inline-flex; align-items: center; gap: .8rem; font-size: 1.75rem;">
<svg width="0.65em" height="0.65em" viewBox="0 0 115 115" fill="none" xmlns="http://www.w3.org/2000/svg">
<rect width="23" height="23" fill="white"/>
<rect y="69" width="23" height="23" fill="white"/>
<rect x="23" width="23" height="23" fill="#AEAEAE"/>
<rect x="23" y="69" width="23" height="23" fill="#AEAEAE"/>
<rect x="46" width="23" height="23" fill="white"/>
<rect x="46" y="69" width="23" height="23" fill="white"/>
<rect x="69" width="23" height="23" fill="black"/>
<rect x="69" y="69" width="23" height="23" fill="black"/>
<rect x="92" width="23" height="23" fill="#D9D9D9"/>
<rect x="92" y="69" width="23" height="23" fill="#AEAEAE"/>
<rect x="115" y="46" width="23" height="23" fill="white"/>
<rect x="115" y="115" width="23" height="23" fill="white"/>
<rect x="115" y="69" width="23" height="23" fill="#D9D9D9"/>
<rect x="92" y="46" width="23" height="23" fill="#AEAEAE"/>
<rect x="92" y="115" width="23" height="23" fill="#AEAEAE"/>
<rect x="92" y="69" width="23" height="23" fill="white"/>
<rect x="69" y="46" width="23" height="23" fill="white"/>
<rect x="69" y="115" width="23" height="23" fill="white"/>
<rect x="69" y="69" width="23" height="23" fill="#D9D9D9"/>
<rect x="46" y="46" width="23" height="23" fill="black"/>
<rect x="46" y="115" width="23" height="23" fill="black"/>
<rect x="46" y="69" width="23" height="23" fill="black"/>
<rect x="23" y="46" width="23" height="23" fill="#D9D9D9"/>
<rect x="23" y="115" width="23" height="23" fill="#AEAEAE"/>
<rect x="23" y="69" width="23" height="23" fill="black"/>
</svg>
<h1 style="font-weight: 900;">Stable Diffusion Spaces</h1>
</div>
<p style="margin-bottom: 20px;">Stable Diffusion is a state of the art text-to-image model that generates images from a text description.</p>
</div>
"""
)
with gr.Group():
with gr.Box():
with gr.Row().style(mobile_collapse=False, equal_height=True):
text = gr.Textbox(
label="Enter your prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
btn = gr.Button("Generate image").style(
margin=False,
rounded=(False, True, True, False),
)
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(grid=[3], height="auto")
advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
with gr.Row(elem_id="advanced-options"):
samples = gr.Slider(label="Images", minimum=1, maximum=3, value=3, step=1)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=40, step=1)
scale = gr.Slider(
label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1
)
seed = gr.Slider(
label="Random seed",
minimum=0,
maximum=2147483647,
step=1,
randomize=True,
)
ex = gr.Examples(examples=examples, fn=infer, inputs=[text, samples, steps, scale, seed], outputs=gallery, cache_examples=False)
ex.dataset.headers = [""]
text.submit(infer, inputs=[text, samples, steps, scale, seed], outputs=gallery)
btn.click(infer, inputs=[text, samples, steps, scale, seed], outputs=gallery)
advanced_button.click(
None,
[],
text,
_js="""
() => {
const options = document.querySelector("body > gradio-app").querySelector("#advanced-options");
options.style.display = ["none", ""].includes(options.style.display) ? "flex" : "none";
}""",
)
gr.HTML(
"""
<div class="footer">
<p>Model by <a href="https://huggingface.co/CompVis" style="text-decoration: underline;" target="_blank">CompVis</a> and <a href="https://huggingface.co/stabilityai" style="text-decoration: underline;" target="_blank">Stability AI</a> - Demo by 🤗 Hugging Face
</p>
</div>
<div class="acknowledgments">
<p><h4>LICENSE</h4>
The model is licensed with an <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" style="text-decoration: underline;" target="_blank">CreativeML Open RAIL-M</a> license. The license states that the outputs that you make fully belong to you, and you are liable when sharing it. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" target="_blank" style="text-decoration: underline;" target="_blank">read the license</a></p>
<p><h4>Biases and content acknowledgment</h4>
Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the LAION-400M dataset, which scrapped non-curated image-text-pairs from the internet (the exception being the the removal of illegal content) and is meant for research purposes. You can read more in the <a href="https://huggingface.co/CompVis/stable-diffusion-v1-4" style="text-decoration: underline;" target="_blank">model card</a></p>
</div>
"""
)
block.queue(max_size=40).launch() |