easygui / tools /rvc_for_realtime.py
nevreal's picture
Upload folder using huggingface_hub
d64f270 verified
raw
history blame
16.7 kB
from io import BytesIO
import os
import pickle
import sys
import traceback
from infer.lib import jit
from infer.lib.jit.get_synthesizer import get_synthesizer
from time import time as ttime
import fairseq
import faiss
import numpy as np
import parselmouth
import pyworld
import scipy.signal as signal
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchcrepe
from infer.lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
now_dir = os.getcwd()
sys.path.append(now_dir)
from multiprocessing import Manager as M
from configs.config import Config
# config = Config()
mm = M()
def printt(strr, *args):
if len(args) == 0:
print(strr)
else:
print(strr % args)
# config.device=torch.device("cpu")########强制cpu测试
# config.is_half=False########强制cpu测试
class RVC:
def __init__(
self,
key,
pth_path,
index_path,
index_rate,
n_cpu,
inp_q,
opt_q,
config: Config,
last_rvc=None,
) -> None:
"""
初始化
"""
try:
if config.dml == True:
def forward_dml(ctx, x, scale):
ctx.scale = scale
res = x.clone().detach()
return res
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
# global config
self.config = config
self.inp_q = inp_q
self.opt_q = opt_q
# device="cpu"########强制cpu测试
self.device = config.device
self.f0_up_key = key
self.f0_min = 50
self.f0_max = 1100
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
self.n_cpu = n_cpu
self.use_jit = self.config.use_jit
self.is_half = config.is_half
if index_rate != 0:
self.index = faiss.read_index(index_path)
self.big_npy = self.index.reconstruct_n(0, self.index.ntotal)
printt("Index search enabled")
self.pth_path: str = pth_path
self.index_path = index_path
self.index_rate = index_rate
self.cache_pitch: torch.Tensor = torch.zeros(
1024, device=self.device, dtype=torch.long
)
self.cache_pitchf = torch.zeros(
1024, device=self.device, dtype=torch.float32
)
if last_rvc is None:
models, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
["assets/hubert/hubert_base.pt"],
suffix="",
)
hubert_model = models[0]
hubert_model = hubert_model.to(self.device)
if self.is_half:
hubert_model = hubert_model.half()
else:
hubert_model = hubert_model.float()
hubert_model.eval()
self.model = hubert_model
else:
self.model = last_rvc.model
self.net_g: nn.Module = None
def set_default_model():
self.net_g, cpt = get_synthesizer(self.pth_path, self.device)
self.tgt_sr = cpt["config"][-1]
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
self.if_f0 = cpt.get("f0", 1)
self.version = cpt.get("version", "v1")
if self.is_half:
self.net_g = self.net_g.half()
else:
self.net_g = self.net_g.float()
def set_jit_model():
jit_pth_path = self.pth_path.rstrip(".pth")
jit_pth_path += ".half.jit" if self.is_half else ".jit"
reload = False
if str(self.device) == "cuda":
self.device = torch.device("cuda:0")
if os.path.exists(jit_pth_path):
cpt = jit.load(jit_pth_path)
model_device = cpt["device"]
if model_device != str(self.device):
reload = True
else:
reload = True
if reload:
cpt = jit.synthesizer_jit_export(
self.pth_path,
"script",
None,
device=self.device,
is_half=self.is_half,
)
self.tgt_sr = cpt["config"][-1]
self.if_f0 = cpt.get("f0", 1)
self.version = cpt.get("version", "v1")
self.net_g = torch.jit.load(
BytesIO(cpt["model"]), map_location=self.device
)
self.net_g.infer = self.net_g.forward
self.net_g.eval().to(self.device)
def set_synthesizer():
if self.use_jit and not config.dml:
if self.is_half and "cpu" in str(self.device):
printt(
"Use default Synthesizer model. \
Jit is not supported on the CPU for half floating point"
)
set_default_model()
else:
set_jit_model()
else:
set_default_model()
if last_rvc is None or last_rvc.pth_path != self.pth_path:
set_synthesizer()
else:
self.tgt_sr = last_rvc.tgt_sr
self.if_f0 = last_rvc.if_f0
self.version = last_rvc.version
self.is_half = last_rvc.is_half
if last_rvc.use_jit != self.use_jit:
set_synthesizer()
else:
self.net_g = last_rvc.net_g
if last_rvc is not None and hasattr(last_rvc, "model_rmvpe"):
self.model_rmvpe = last_rvc.model_rmvpe
if last_rvc is not None and hasattr(last_rvc, "model_fcpe"):
self.device_fcpe = last_rvc.device_fcpe
self.model_fcpe = last_rvc.model_fcpe
except:
printt(traceback.format_exc())
def change_key(self, new_key):
self.f0_up_key = new_key
def change_index_rate(self, new_index_rate):
if new_index_rate != 0 and self.index_rate == 0:
self.index = faiss.read_index(self.index_path)
self.big_npy = self.index.reconstruct_n(0, self.index.ntotal)
printt("Index search enabled")
self.index_rate = new_index_rate
def get_f0_post(self, f0):
if not torch.is_tensor(f0):
f0 = torch.from_numpy(f0)
f0 = f0.float().to(self.device).squeeze()
f0_mel = 1127 * torch.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * 254 / (
self.f0_mel_max - self.f0_mel_min
) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > 255] = 255
f0_coarse = torch.round(f0_mel).long()
return f0_coarse, f0
def get_f0(self, x, f0_up_key, n_cpu, method="harvest"):
n_cpu = int(n_cpu)
if method == "crepe":
return self.get_f0_crepe(x, f0_up_key)
if method == "rmvpe":
return self.get_f0_rmvpe(x, f0_up_key)
if method == "fcpe":
return self.get_f0_fcpe(x, f0_up_key)
x = x.cpu().numpy()
if method == "pm":
p_len = x.shape[0] // 160 + 1
f0_min = 65
l_pad = int(np.ceil(1.5 / f0_min * 16000))
r_pad = l_pad + 1
s = parselmouth.Sound(np.pad(x, (l_pad, r_pad)), 16000).to_pitch_ac(
time_step=0.01,
voicing_threshold=0.6,
pitch_floor=f0_min,
pitch_ceiling=1100,
)
assert np.abs(s.t1 - 1.5 / f0_min) < 0.001
f0 = s.selected_array["frequency"]
if len(f0) < p_len:
f0 = np.pad(f0, (0, p_len - len(f0)))
f0 = f0[:p_len]
f0 *= pow(2, f0_up_key / 12)
return self.get_f0_post(f0)
if n_cpu == 1:
f0, t = pyworld.harvest(
x.astype(np.double),
fs=16000,
f0_ceil=1100,
f0_floor=50,
frame_period=10,
)
f0 = signal.medfilt(f0, 3)
f0 *= pow(2, f0_up_key / 12)
return self.get_f0_post(f0)
f0bak = np.zeros(x.shape[0] // 160 + 1, dtype=np.float64)
length = len(x)
part_length = 160 * ((length // 160 - 1) // n_cpu + 1)
n_cpu = (length // 160 - 1) // (part_length // 160) + 1
ts = ttime()
res_f0 = mm.dict()
for idx in range(n_cpu):
tail = part_length * (idx + 1) + 320
if idx == 0:
self.inp_q.put((idx, x[:tail], res_f0, n_cpu, ts))
else:
self.inp_q.put(
(idx, x[part_length * idx - 320 : tail], res_f0, n_cpu, ts)
)
while 1:
res_ts = self.opt_q.get()
if res_ts == ts:
break
f0s = [i[1] for i in sorted(res_f0.items(), key=lambda x: x[0])]
for idx, f0 in enumerate(f0s):
if idx == 0:
f0 = f0[:-3]
elif idx != n_cpu - 1:
f0 = f0[2:-3]
else:
f0 = f0[2:]
f0bak[part_length * idx // 160 : part_length * idx // 160 + f0.shape[0]] = (
f0
)
f0bak = signal.medfilt(f0bak, 3)
f0bak *= pow(2, f0_up_key / 12)
return self.get_f0_post(f0bak)
def get_f0_crepe(self, x, f0_up_key):
if "privateuseone" in str(
self.device
): ###不支持dml,cpu又太慢用不成,拿fcpe顶替
return self.get_f0(x, f0_up_key, 1, "fcpe")
# printt("using crepe,device:%s"%self.device)
f0, pd = torchcrepe.predict(
x.unsqueeze(0).float(),
16000,
160,
self.f0_min,
self.f0_max,
"full",
batch_size=512,
# device=self.device if self.device.type!="privateuseone" else "cpu",###crepe不用半精度全部是全精度所以不愁###cpu延迟高到没法用
device=self.device,
return_periodicity=True,
)
pd = torchcrepe.filter.median(pd, 3)
f0 = torchcrepe.filter.mean(f0, 3)
f0[pd < 0.1] = 0
f0 *= pow(2, f0_up_key / 12)
return self.get_f0_post(f0)
def get_f0_rmvpe(self, x, f0_up_key):
if hasattr(self, "model_rmvpe") == False:
from infer.lib.rmvpe import RMVPE
printt("Loading rmvpe model")
self.model_rmvpe = RMVPE(
"assets/rmvpe/rmvpe.pt",
is_half=self.is_half,
device=self.device,
use_jit=self.config.use_jit,
)
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
f0 *= pow(2, f0_up_key / 12)
return self.get_f0_post(f0)
def get_f0_fcpe(self, x, f0_up_key):
if hasattr(self, "model_fcpe") == False:
from torchfcpe import spawn_bundled_infer_model
printt("Loading fcpe model")
if "privateuseone" in str(self.device):
self.device_fcpe = "cpu"
else:
self.device_fcpe = self.device
self.model_fcpe = spawn_bundled_infer_model(self.device_fcpe)
f0 = self.model_fcpe.infer(
x.to(self.device_fcpe).unsqueeze(0).float(),
sr=16000,
decoder_mode="local_argmax",
threshold=0.006,
)
f0 *= pow(2, f0_up_key / 12)
return self.get_f0_post(f0)
def infer(
self,
input_wav: torch.Tensor,
block_frame_16k,
skip_head,
return_length,
f0method,
) -> np.ndarray:
t1 = ttime()
with torch.no_grad():
if self.config.is_half:
feats = input_wav.half().view(1, -1)
else:
feats = input_wav.float().view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
inputs = {
"source": feats,
"padding_mask": padding_mask,
"output_layer": 9 if self.version == "v1" else 12,
}
logits = self.model.extract_features(**inputs)
feats = (
self.model.final_proj(logits[0]) if self.version == "v1" else logits[0]
)
feats = torch.cat((feats, feats[:, -1:, :]), 1)
t2 = ttime()
try:
if hasattr(self, "index") and self.index_rate != 0:
npy = feats[0][skip_head // 2 :].cpu().numpy().astype("float32")
score, ix = self.index.search(npy, k=8)
if (ix >= 0).all():
weight = np.square(1 / score)
weight /= weight.sum(axis=1, keepdims=True)
npy = np.sum(
self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1
)
if self.config.is_half:
npy = npy.astype("float16")
feats[0][skip_head // 2 :] = (
torch.from_numpy(npy).unsqueeze(0).to(self.device)
* self.index_rate
+ (1 - self.index_rate) * feats[0][skip_head // 2 :]
)
else:
printt(
"Invalid index. You MUST use added_xxxx.index but not trained_xxxx.index!"
)
else:
printt("Index search FAILED or disabled")
except:
traceback.print_exc()
printt("Index search FAILED")
t3 = ttime()
p_len = input_wav.shape[0] // 160
if self.if_f0 == 1:
f0_extractor_frame = block_frame_16k + 800
if f0method == "rmvpe":
f0_extractor_frame = 5120 * ((f0_extractor_frame - 1) // 5120 + 1) - 160
pitch, pitchf = self.get_f0(
input_wav[-f0_extractor_frame:], self.f0_up_key, self.n_cpu, f0method
)
shift = block_frame_16k // 160
self.cache_pitch[:-shift] = self.cache_pitch[shift:].clone()
self.cache_pitchf[:-shift] = self.cache_pitchf[shift:].clone()
self.cache_pitch[4 - pitch.shape[0] :] = pitch[3:-1]
self.cache_pitchf[4 - pitch.shape[0] :] = pitchf[3:-1]
cache_pitch = self.cache_pitch[None, -p_len:]
cache_pitchf = self.cache_pitchf[None, -p_len:]
t4 = ttime()
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
feats = feats[:, :p_len, :]
p_len = torch.LongTensor([p_len]).to(self.device)
sid = torch.LongTensor([0]).to(self.device)
skip_head = torch.LongTensor([skip_head])
return_length = torch.LongTensor([return_length])
with torch.no_grad():
if self.if_f0 == 1:
infered_audio, _, _ = self.net_g.infer(
feats,
p_len,
cache_pitch,
cache_pitchf,
sid,
skip_head,
return_length,
)
else:
infered_audio, _, _ = self.net_g.infer(
feats, p_len, sid, skip_head, return_length
)
t5 = ttime()
printt(
"Spent time: fea = %.3fs, index = %.3fs, f0 = %.3fs, model = %.3fs",
t2 - t1,
t3 - t2,
t4 - t3,
t5 - t4,
)
return infered_audio.squeeze().float()