File size: 3,779 Bytes
752fdc4
ce78ec6
 
b3feaa3
51294aa
b3feaa3
99bd29e
 
 
 
b3feaa3
 
 
 
 
 
 
3287a07
35ae31f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce78ec6
 
 
 
eafed86
ce78ec6
 
 
02b756e
 
 
 
 
 
 
 
 
 
 
 
 
ce78ec6
 
 
 
02b756e
 
 
 
 
 
eafed86
ce78ec6
 
 
278e21a
7e4e636
b3feaa3
 
3287a07
a072676
b3feaa3
3287a07
 
b3feaa3
3287a07
 
b3feaa3
 
3287a07
 
ce78ec6
7e4e636
 
b3feaa3
7e4e636
90c9489
b3feaa3
 
 
 
bc70f4a
b3feaa3
bc70f4a
 
ff079ce
bc70f4a
 
 
 
 
 
ff079ce
b3feaa3
26c9e99
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import os
import torch
import sys
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import json

# Get the HF_TOKEN from the environment variable (set by the Space)
hf_token = os.getenv("HF_TOKEN")

tokenizer = AutoTokenizer.from_pretrained('google/gemma-2-2b-it', use_auth_token=hf_token)

# Configure 4-bit quantization using BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_quant_type="nf4",
)

# Check if a GPU is available
if torch.cuda.is_available():
    # Load the model with 4-bit quantization (for GPU)
    quantization_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.bfloat16,
        bnb_4bit_quant_type="nf4",
    )
    model = AutoModelForCausalLM.from_pretrained(
        'google/gemma-2-2b-it',
        device_map="auto",
        quantization_config=quantization_config,
        use_auth_token=hf_token
    )
else:
    # Load the model without quantization (for CPU)
    model = AutoModelForCausalLM.from_pretrained(
        'google/gemma-2-2b-it',
        device_map="auto",
        use_auth_token=hf_token
    )


# Definir el prompt para generar un JSON con eventos anidados
prompt = (
    "Generate a JSON object that describes a sequence of potential future events, where each event can have nested subevents. The JSON structure should adhere to the following format:\n\n"
    "{\n"
    "  \"events\": {\n"
    "    \"event\": {\n"
    "      \"event_number\": <integer>,\n"
    "      \"name\": <string>,\n"
    "      \"description\": <string>,\n"
    "      \"probability\": <integer (0-100)>,\n"
    "      \"duration_days\": <integer>,\n"
    "      \"subevents\": { \n"
    "        \"event\": { \n"
    "          // Nested events with the same structure\n"
    "        } \n"
    "        // or\n"
    "        \"event\": [\n"
    "          // Array of nested events with the same structure\n"
    "        ]\n"
    "      }\n"
    "    }\n"
    "  }\n"
    "}\n\n"
    "Ensure the generated JSON is enclosed between `<json>` and `</json>` tags. For example:\n\n"
    "<json>\n"
    "{ \n"
    "  // Your generated JSON here \n"
    "}\n"
    "</json>\n\n"
    "Now, generate a JSON with the before-mentioned schema, to reflect the potential future timeline with the following theme, responding only with the JSON enclosed within the `<json>` and `</json>` tags. Theme: "
)


def generate(event):
    combined_input = f"{prompt} {event}"
    prompt_msg = [{'role': 'user', 'content': combined_input}]

    inputs = tokenizer.apply_chat_template(
        prompt_msg,
        add_generation_prompt=True,
        return_tensors='pt'
    )

    tokens = model.generate(
        inputs.to(model.device),
        max_new_tokens=1024,
        temperature=0.5,
        do_sample=True
    )

    # Get the length of the input tokens (adjust based on your tokenizer)
    input_length = len(tokenizer.encode(combined_input))

    output_text = tokenizer.decode(tokens[0][input_length:], skip_special_tokens=True)
    print(output_text)
    json_start_index = output_text.find("<json>")
    json_end_index = output_text.find("</json>")

    if json_start_index != -1 and json_end_index != -1:
        json_string = output_text[json_start_index + 6:json_end_index].strip()

        # Debugging: Print the extracted JSON string to check its contents
        print("Extracted JSON String:", json_string)

        # Load and return the JSON data
        try:
            data = json.loads(json_string)
            return data
        except json.JSONDecodeError as e:
            return f"Error: Invalid JSON - {e}"

    else:
        return "Error: <json> or </json> not found in generated output"