Spaces:
Runtime error
Runtime error
Commit
Β·
b3feaa3
1
Parent(s):
f0edf49
initial commit
Browse files- gen.py +40 -14
- psychohistory.py +76 -159
- requirements.txt +4 -2
gen.py
CHANGED
@@ -1,12 +1,21 @@
|
|
1 |
import torch
|
2 |
import sys
|
3 |
-
import
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
model = AutoModelForCausalLM.from_pretrained(
|
8 |
-
'
|
9 |
device_map="auto",
|
|
|
10 |
)
|
11 |
|
12 |
|
@@ -147,26 +156,43 @@ prompt = (
|
|
147 |
" }\n"
|
148 |
" }\n"
|
149 |
"}\n\n"
|
150 |
-
"Ahora, genera un JSON similar con eventos anidados, pero cambia los detalles y nΓΊmeros para hacer que sea con el input que viene a continuacion, respondiendo solo el JSON
|
151 |
)
|
152 |
|
153 |
|
154 |
def generate(event):
|
155 |
-
|
156 |
-
prompt_msg = [{
|
|
|
157 |
inputs = tokenizer.apply_chat_template(
|
158 |
prompt_msg,
|
159 |
-
add_generation_prompt=
|
160 |
return_tensors='pt'
|
161 |
)
|
162 |
-
|
163 |
tokens = model.generate(
|
164 |
inputs.to(model.device),
|
165 |
-
max_new_tokens=
|
166 |
-
temperature=0.
|
167 |
do_sample=True
|
168 |
)
|
169 |
-
|
170 |
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
import sys
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
4 |
+
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained('google/gemma-2-2b-it')
|
6 |
+
|
7 |
+
# Configure 4-bit quantization using BitsAndBytesConfig
|
8 |
+
quantization_config = BitsAndBytesConfig(
|
9 |
+
load_in_4bit=True,
|
10 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
11 |
+
bnb_4bit_quant_type="nf4",
|
12 |
+
)
|
13 |
|
14 |
+
# Load the model with the quantization configuration
|
15 |
model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
'google/gemma-2-2b-it',
|
17 |
device_map="auto",
|
18 |
+
quantization_config=quantization_config,
|
19 |
)
|
20 |
|
21 |
|
|
|
156 |
" }\n"
|
157 |
" }\n"
|
158 |
"}\n\n"
|
159 |
+
"Ahora, genera un JSON similar con eventos anidados, pero cambia los detalles y nΓΊmeros para hacer que sea con el input que viene a continuacion, respondiendo solo el JSON empezando con <json>:"
|
160 |
)
|
161 |
|
162 |
|
163 |
def generate(event):
|
164 |
+
combined_input = f"{prompt} {event}" # Combine prompt and event
|
165 |
+
prompt_msg = [{'role': 'user', 'content': combined_input}]
|
166 |
+
|
167 |
inputs = tokenizer.apply_chat_template(
|
168 |
prompt_msg,
|
169 |
+
add_generation_prompt=True,
|
170 |
return_tensors='pt'
|
171 |
)
|
172 |
+
|
173 |
tokens = model.generate(
|
174 |
inputs.to(model.device),
|
175 |
+
max_new_tokens=1024,
|
176 |
+
temperature=0.5,
|
177 |
do_sample=True
|
178 |
)
|
|
|
179 |
|
180 |
+
|
181 |
+
output_text = tokenizer.decode(tokens[0], skip_special_tokens=False)
|
182 |
+
user_prompt_length = len(f"<bos><start_of_turn>user\n{prompt}\n{event}<end_of_turn>\n<start_of_turn>model\n") # Calculate user prompt length
|
183 |
+
|
184 |
+
json_start_index = output_text.find("<json>")
|
185 |
+
json_end_index = output_text.find("</json>")
|
186 |
+
|
187 |
+
if json_start_index != -1 and json_end_index != -1:
|
188 |
+
json_string = output_text[max(json_start_index + 6, user_prompt_length):json_end_index].strip() # Trim whitespace and remove prompt
|
189 |
+
|
190 |
+
# Validate JSON (you'll need to define a schema for your JSON structure)
|
191 |
+
try:
|
192 |
+
validate(instance=json.loads(json_string), schema=your_json_schema)
|
193 |
+
return json_string
|
194 |
+
except ValidationError as e:
|
195 |
+
return f"Error: Invalid JSON - {e}"
|
196 |
+
|
197 |
+
else:
|
198 |
+
return "Error: <json> or </json> not found in generated output"
|
psychohistory.py
CHANGED
@@ -11,220 +11,156 @@ def generate_tree(current_x, current_y, depth, max_depth, max_nodes, x_range, G,
|
|
11 |
if node_count_per_depth is None:
|
12 |
node_count_per_depth = {}
|
13 |
|
14 |
-
if depth not in node_count_per_depth:
|
15 |
-
node_count_per_depth[depth] = 0
|
16 |
-
|
17 |
if depth > max_depth:
|
18 |
return node_count_per_depth
|
19 |
|
|
|
|
|
|
|
20 |
num_children = random.randint(1, max_nodes)
|
21 |
x_positions = [current_x + i * x_range / (num_children + 1) for i in range(num_children)]
|
22 |
|
23 |
for x in x_positions:
|
24 |
-
# Add node to the graph
|
25 |
node_id = len(G.nodes)
|
26 |
node_count_per_depth[depth] += 1
|
27 |
-
prob = random.uniform(0, 1)
|
28 |
-
G.add_node(node_id, pos=(x, prob, depth))
|
29 |
if parent is not None:
|
30 |
G.add_edge(parent, node_id)
|
31 |
-
# Recursively add child nodes
|
32 |
generate_tree(x, current_y + 1, depth + 1, max_depth, max_nodes, x_range, G, parent=node_id, node_count_per_depth=node_count_per_depth)
|
33 |
|
34 |
return node_count_per_depth
|
35 |
|
36 |
|
37 |
-
|
38 |
def build_graph_from_json(json_data, G):
|
39 |
"""Builds a graph from JSON data."""
|
|
|
|
|
40 |
def add_event(parent_id, event_data, depth):
|
41 |
-
"""Recursively adds events and subevents to the graph."""
|
42 |
-
# Add the current event node
|
43 |
node_id = len(G.nodes)
|
44 |
-
prob = event_data['probability'] / 100.0
|
45 |
-
pos = (depth, prob, event_data['event_number'])
|
46 |
-
label = event_data['name']
|
47 |
G.add_node(node_id, pos=pos, label=label)
|
48 |
if parent_id is not None:
|
49 |
G.add_edge(parent_id, node_id)
|
50 |
|
51 |
-
# Add child events
|
52 |
subevents = event_data.get('subevents', {}).get('event', [])
|
53 |
if not isinstance(subevents, list):
|
54 |
-
subevents = [subevents]
|
55 |
|
56 |
for subevent in subevents:
|
57 |
add_event(node_id, subevent, depth + 1)
|
58 |
|
59 |
-
data = json.loads(json_data)
|
60 |
-
root_id = len(G.nodes)
|
61 |
root_event = list(data.get('events', {}).values())[0]
|
|
|
62 |
G.add_node(root_id, pos=(0, root_event['probability'] / 100.0, root_event['event_number']), label=root_event['name'])
|
63 |
-
add_event(None, root_event, 0)
|
64 |
-
|
65 |
|
66 |
|
67 |
def find_paths(G):
|
68 |
-
"""Finds
|
69 |
-
best_path = None
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
# Calculate path duration
|
102 |
-
x_positions = [G.nodes[node]['pos'][0] for node in path]
|
103 |
-
duration = max(x_positions) - min(x_positions)
|
104 |
-
|
105 |
-
# Evaluate path with the longest duration
|
106 |
-
if duration > max_duration:
|
107 |
-
max_duration = duration
|
108 |
-
longest_duration_path = path
|
109 |
-
|
110 |
-
# Evaluate path with the shortest duration
|
111 |
-
if duration < min_duration:
|
112 |
-
min_duration = duration
|
113 |
-
shortest_duration_path = path
|
114 |
-
|
115 |
-
return best_path, best_mean_prob, worst_path, worst_mean_prob, longest_duration_path, shortest_duration_path
|
116 |
|
117 |
def draw_path_3d(G, path, filename='path_plot_3d.png', highlight_color='blue'):
|
118 |
-
"""Draws
|
119 |
-
# Create a subgraph containing only the nodes and edges of the path
|
120 |
H = G.subgraph(path).copy()
|
121 |
-
|
122 |
pos = nx.get_node_attributes(G, 'pos')
|
123 |
-
|
124 |
-
# Get data for 3D visualization
|
125 |
x_vals, y_vals, z_vals = zip(*[pos[node] for node in path])
|
126 |
-
|
127 |
fig = plt.figure(figsize=(16, 12))
|
128 |
ax = fig.add_subplot(111, projection='3d')
|
129 |
|
130 |
-
|
131 |
-
node_colors = []
|
132 |
-
for node in path:
|
133 |
-
prob = G.nodes[node]['pos'][1]
|
134 |
-
if prob < 0.33:
|
135 |
-
node_colors.append('red')
|
136 |
-
elif prob < 0.67:
|
137 |
-
node_colors.append('blue')
|
138 |
-
else:
|
139 |
-
node_colors.append('green')
|
140 |
-
|
141 |
-
# Draw nodes
|
142 |
ax.scatter(x_vals, y_vals, z_vals, c=node_colors, s=700, edgecolors='black', alpha=0.7)
|
143 |
-
|
144 |
-
# Draw edges
|
145 |
for edge in H.edges():
|
146 |
x_start, y_start, z_start = pos[edge[0]]
|
147 |
x_end, y_end, z_end = pos[edge[1]]
|
148 |
ax.plot([x_start, x_end], [y_start, y_end], [z_start, z_end], color=highlight_color, lw=2)
|
149 |
|
150 |
-
# Add labels to nodes
|
151 |
for node, (x, y, z) in pos.items():
|
152 |
if node in path:
|
153 |
ax.text(x, y, z, str(node), fontsize=12, color='black')
|
154 |
|
155 |
-
# Set labels and title
|
156 |
ax.set_xlabel('Time (weeks)')
|
157 |
ax.set_ylabel('Event Probability')
|
158 |
ax.set_zlabel('Event Number')
|
159 |
ax.set_title('3D Event Tree - Path')
|
160 |
|
161 |
-
plt.savefig(filename, bbox_inches='tight')
|
162 |
-
plt.close()
|
163 |
|
164 |
|
165 |
def draw_global_tree_3d(G, filename='global_tree.png'):
|
166 |
-
"""Draws the entire graph in 3D
|
167 |
pos = nx.get_node_attributes(G, 'pos')
|
168 |
labels = nx.get_node_attributes(G, 'label')
|
169 |
-
|
170 |
-
# Check if the graph is empty
|
171 |
if not pos:
|
172 |
print("Graph is empty. No nodes to visualize.")
|
173 |
return
|
174 |
|
175 |
-
# Get data for 3D visualization
|
176 |
x_vals, y_vals, z_vals = zip(*pos.values())
|
177 |
-
|
178 |
fig = plt.figure(figsize=(16, 12))
|
179 |
ax = fig.add_subplot(111, projection='3d')
|
180 |
|
181 |
-
|
182 |
-
node_colors = []
|
183 |
-
for node, (x, prob, z) in pos.items():
|
184 |
-
if prob < 0.33:
|
185 |
-
node_colors.append('red')
|
186 |
-
elif prob < 0.67:
|
187 |
-
node_colors.append('blue')
|
188 |
-
else:
|
189 |
-
node_colors.append('green')
|
190 |
-
|
191 |
-
# Draw nodes
|
192 |
ax.scatter(x_vals, y_vals, z_vals, c=node_colors, s=700, edgecolors='black', alpha=0.7)
|
193 |
-
|
194 |
-
# Draw edges
|
195 |
for edge in G.edges():
|
196 |
x_start, y_start, z_start = pos[edge[0]]
|
197 |
x_end, y_end, z_end = pos[edge[1]]
|
198 |
ax.plot([x_start, x_end], [y_start, y_end], [z_start, z_end], color='gray', lw=2)
|
199 |
|
200 |
-
# Add labels to nodes
|
201 |
for node, (x, y, z) in pos.items():
|
202 |
label = labels.get(node, f"{node}")
|
203 |
ax.text(x, y, z, label, fontsize=12, color='black')
|
204 |
|
205 |
-
# Set labels and title
|
206 |
ax.set_xlabel('Time')
|
207 |
ax.set_ylabel('Probability')
|
208 |
ax.set_zlabel('Event Number')
|
209 |
ax.set_title('3D Event Tree')
|
210 |
|
211 |
-
plt.savefig(filename, bbox_inches='tight')
|
212 |
-
plt.close()
|
213 |
|
214 |
def main(mode, input_file=None):
|
215 |
G = nx.DiGraph()
|
216 |
|
217 |
if mode == 'random':
|
218 |
-
|
219 |
-
starting_y = 0
|
220 |
-
max_depth = 5 # Maximum depth of the tree
|
221 |
-
max_nodes = 3 # Maximum number of child nodes
|
222 |
-
x_range = 10 # Maximum range for x position of nodes
|
223 |
-
|
224 |
-
# Generate the tree and get node count per depth
|
225 |
-
generate_tree(starting_x, starting_y, 0, max_depth, max_nodes, x_range, G)
|
226 |
-
|
227 |
-
|
228 |
elif mode == 'json' and input_file:
|
229 |
with open(input_file, 'r') as file:
|
230 |
json_data = file.read()
|
@@ -233,50 +169,33 @@ def main(mode, input_file=None):
|
|
233 |
print("Invalid mode or input file not provided.")
|
234 |
return
|
235 |
|
236 |
-
|
237 |
-
draw_global_tree_3d(G, filename='global_tree.png')
|
238 |
-
|
239 |
|
240 |
-
|
241 |
-
best_path, best_mean_prob, worst_path, worst_mean_prob, longest_duration_path, shortest_duration_path = find_paths(G)
|
242 |
|
243 |
-
# Print results
|
244 |
if best_path:
|
245 |
-
print(f"\nPath with the highest average probability:")
|
246 |
-
print(" -> ".join(map(str, best_path)))
|
247 |
print(f"Average probability: {best_mean_prob:.2f}")
|
248 |
-
|
249 |
if worst_path:
|
250 |
-
print(f"\nPath with the lowest average probability:")
|
251 |
-
print(" -> ".join(map(str, worst_path)))
|
252 |
print(f"Average probability: {worst_mean_prob:.2f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
-
|
255 |
-
print(f"\nPath with the longest duration:")
|
256 |
-
print(" -> ".join(map(str, longest_duration_path)))
|
257 |
-
print(f"Duration: {max(G.nodes[node]['pos'][0] for node in longest_duration_path) - min(G.nodes[node]['pos'][0] for node in longest_duration_path):.2f}")
|
258 |
|
259 |
-
if shortest_duration_path:
|
260 |
-
print(f"\nPath with the shortest duration:")
|
261 |
-
print(" -> ".join(map(str, shortest_duration_path)))
|
262 |
-
print(f"Duration: {max(G.nodes[node]['pos'][0] for node in shortest_duration_path) - min(G.nodes[node]['pos'][0] for node in shortest_duration_path):.2f}")
|
263 |
-
|
264 |
-
# Save the global visualization
|
265 |
-
draw_global_tree_3d(G, filename='global_tree.png')
|
266 |
-
|
267 |
-
# Draw and save the 3D figure for each relevant path
|
268 |
if best_path:
|
269 |
-
draw_path_3d(G,
|
270 |
-
|
271 |
if worst_path:
|
272 |
-
draw_path_3d(G,
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
if shortest_duration_path:
|
278 |
-
draw_path_3d(G, path=shortest_duration_path, filename='shortest_duration_path.png', highlight_color='purple')
|
279 |
-
|
280 |
|
281 |
|
282 |
if __name__ == "__main__":
|
@@ -286,5 +205,3 @@ if __name__ == "__main__":
|
|
286 |
mode = sys.argv[1]
|
287 |
input_file = sys.argv[2] if len(sys.argv) > 2 else None
|
288 |
main(mode, input_file)
|
289 |
-
|
290 |
-
|
|
|
11 |
if node_count_per_depth is None:
|
12 |
node_count_per_depth = {}
|
13 |
|
|
|
|
|
|
|
14 |
if depth > max_depth:
|
15 |
return node_count_per_depth
|
16 |
|
17 |
+
if depth not in node_count_per_depth:
|
18 |
+
node_count_per_depth[depth] = 0
|
19 |
+
|
20 |
num_children = random.randint(1, max_nodes)
|
21 |
x_positions = [current_x + i * x_range / (num_children + 1) for i in range(num_children)]
|
22 |
|
23 |
for x in x_positions:
|
|
|
24 |
node_id = len(G.nodes)
|
25 |
node_count_per_depth[depth] += 1
|
26 |
+
prob = random.uniform(0, 1)
|
27 |
+
G.add_node(node_id, pos=(x, prob, depth))
|
28 |
if parent is not None:
|
29 |
G.add_edge(parent, node_id)
|
|
|
30 |
generate_tree(x, current_y + 1, depth + 1, max_depth, max_nodes, x_range, G, parent=node_id, node_count_per_depth=node_count_per_depth)
|
31 |
|
32 |
return node_count_per_depth
|
33 |
|
34 |
|
|
|
35 |
def build_graph_from_json(json_data, G):
|
36 |
"""Builds a graph from JSON data."""
|
37 |
+
data = json.loads(json_data)
|
38 |
+
|
39 |
def add_event(parent_id, event_data, depth):
|
|
|
|
|
40 |
node_id = len(G.nodes)
|
41 |
+
prob = event_data['probability'] / 100.0
|
42 |
+
pos = (depth, prob, event_data['event_number'])
|
43 |
+
label = event_data['name']
|
44 |
G.add_node(node_id, pos=pos, label=label)
|
45 |
if parent_id is not None:
|
46 |
G.add_edge(parent_id, node_id)
|
47 |
|
|
|
48 |
subevents = event_data.get('subevents', {}).get('event', [])
|
49 |
if not isinstance(subevents, list):
|
50 |
+
subevents = [subevents]
|
51 |
|
52 |
for subevent in subevents:
|
53 |
add_event(node_id, subevent, depth + 1)
|
54 |
|
|
|
|
|
55 |
root_event = list(data.get('events', {}).values())[0]
|
56 |
+
root_id = len(G.nodes)
|
57 |
G.add_node(root_id, pos=(0, root_event['probability'] / 100.0, root_event['event_number']), label=root_event['name'])
|
58 |
+
add_event(None, root_event, 0)
|
|
|
59 |
|
60 |
|
61 |
def find_paths(G):
|
62 |
+
"""Finds paths with highest/lowest probability and longest/shortest durations."""
|
63 |
+
best_path, worst_path = None, None
|
64 |
+
longest_path, shortest_path = None, None
|
65 |
+
best_mean_prob, worst_mean_prob = -1, float('inf')
|
66 |
+
max_duration, min_duration = -1, float('inf')
|
67 |
+
|
68 |
+
# Use nx.all_pairs_shortest_path for efficiency
|
69 |
+
all_paths_dict = dict(nx.all_pairs_shortest_path(G))
|
70 |
+
|
71 |
+
for source, paths_from_source in all_paths_dict.items():
|
72 |
+
for target, path in paths_from_source.items():
|
73 |
+
if source != target and all('pos' in G.nodes[node] for node in path):
|
74 |
+
probabilities = [G.nodes[node]['pos'][1] for node in path]
|
75 |
+
mean_prob = np.mean(probabilities)
|
76 |
+
|
77 |
+
if mean_prob > best_mean_prob:
|
78 |
+
best_mean_prob = mean_prob
|
79 |
+
best_path = path
|
80 |
+
if mean_prob < worst_mean_prob:
|
81 |
+
worst_mean_prob = mean_prob
|
82 |
+
worst_path = path
|
83 |
+
|
84 |
+
x_positions = [G.nodes[node]['pos'][0] for node in path]
|
85 |
+
duration = max(x_positions) - min(x_positions)
|
86 |
+
|
87 |
+
if duration > max_duration:
|
88 |
+
max_duration = duration
|
89 |
+
longest_path = path
|
90 |
+
if duration < min_duration and duration > 0: # Avoid paths with 0 duration
|
91 |
+
min_duration = duration
|
92 |
+
shortest_path = path
|
93 |
+
|
94 |
+
return best_path, best_mean_prob, worst_path, worst_mean_prob, longest_path, shortest_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
def draw_path_3d(G, path, filename='path_plot_3d.png', highlight_color='blue'):
|
97 |
+
"""Draws a specific path in 3D."""
|
|
|
98 |
H = G.subgraph(path).copy()
|
|
|
99 |
pos = nx.get_node_attributes(G, 'pos')
|
|
|
|
|
100 |
x_vals, y_vals, z_vals = zip(*[pos[node] for node in path])
|
101 |
+
|
102 |
fig = plt.figure(figsize=(16, 12))
|
103 |
ax = fig.add_subplot(111, projection='3d')
|
104 |
|
105 |
+
node_colors = ['red' if prob < 0.33 else 'blue' if prob < 0.67 else 'green' for _, prob, _ in [pos[node] for node in path]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
ax.scatter(x_vals, y_vals, z_vals, c=node_colors, s=700, edgecolors='black', alpha=0.7)
|
107 |
+
|
|
|
108 |
for edge in H.edges():
|
109 |
x_start, y_start, z_start = pos[edge[0]]
|
110 |
x_end, y_end, z_end = pos[edge[1]]
|
111 |
ax.plot([x_start, x_end], [y_start, y_end], [z_start, z_end], color=highlight_color, lw=2)
|
112 |
|
|
|
113 |
for node, (x, y, z) in pos.items():
|
114 |
if node in path:
|
115 |
ax.text(x, y, z, str(node), fontsize=12, color='black')
|
116 |
|
|
|
117 |
ax.set_xlabel('Time (weeks)')
|
118 |
ax.set_ylabel('Event Probability')
|
119 |
ax.set_zlabel('Event Number')
|
120 |
ax.set_title('3D Event Tree - Path')
|
121 |
|
122 |
+
plt.savefig(filename, bbox_inches='tight')
|
123 |
+
plt.close()
|
124 |
|
125 |
|
126 |
def draw_global_tree_3d(G, filename='global_tree.png'):
|
127 |
+
"""Draws the entire graph in 3D."""
|
128 |
pos = nx.get_node_attributes(G, 'pos')
|
129 |
labels = nx.get_node_attributes(G, 'label')
|
130 |
+
|
|
|
131 |
if not pos:
|
132 |
print("Graph is empty. No nodes to visualize.")
|
133 |
return
|
134 |
|
|
|
135 |
x_vals, y_vals, z_vals = zip(*pos.values())
|
|
|
136 |
fig = plt.figure(figsize=(16, 12))
|
137 |
ax = fig.add_subplot(111, projection='3d')
|
138 |
|
139 |
+
node_colors = ['red' if prob < 0.33 else 'blue' if prob < 0.67 else 'green' for _, prob, _ in pos.values()]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
ax.scatter(x_vals, y_vals, z_vals, c=node_colors, s=700, edgecolors='black', alpha=0.7)
|
141 |
+
|
|
|
142 |
for edge in G.edges():
|
143 |
x_start, y_start, z_start = pos[edge[0]]
|
144 |
x_end, y_end, z_end = pos[edge[1]]
|
145 |
ax.plot([x_start, x_end], [y_start, y_end], [z_start, z_end], color='gray', lw=2)
|
146 |
|
|
|
147 |
for node, (x, y, z) in pos.items():
|
148 |
label = labels.get(node, f"{node}")
|
149 |
ax.text(x, y, z, label, fontsize=12, color='black')
|
150 |
|
|
|
151 |
ax.set_xlabel('Time')
|
152 |
ax.set_ylabel('Probability')
|
153 |
ax.set_zlabel('Event Number')
|
154 |
ax.set_title('3D Event Tree')
|
155 |
|
156 |
+
plt.savefig(filename, bbox_inches='tight')
|
157 |
+
plt.close()
|
158 |
|
159 |
def main(mode, input_file=None):
|
160 |
G = nx.DiGraph()
|
161 |
|
162 |
if mode == 'random':
|
163 |
+
generate_tree(0, 0, 0, 5, 3, 10, G)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
elif mode == 'json' and input_file:
|
165 |
with open(input_file, 'r') as file:
|
166 |
json_data = file.read()
|
|
|
169 |
print("Invalid mode or input file not provided.")
|
170 |
return
|
171 |
|
172 |
+
draw_global_tree_3d(G)
|
|
|
|
|
173 |
|
174 |
+
best_path, best_mean_prob, worst_path, worst_mean_prob, longest_path, shortest_path = find_paths(G)
|
|
|
175 |
|
|
|
176 |
if best_path:
|
177 |
+
print(f"\nPath with the highest average probability: {' -> '.join(map(str, best_path))}")
|
|
|
178 |
print(f"Average probability: {best_mean_prob:.2f}")
|
|
|
179 |
if worst_path:
|
180 |
+
print(f"\nPath with the lowest average probability: {' -> '.join(map(str, worst_path))}")
|
|
|
181 |
print(f"Average probability: {worst_mean_prob:.2f}")
|
182 |
+
if longest_path:
|
183 |
+
print(f"\nPath with the longest duration: {' -> '.join(map(str, longest_path))}")
|
184 |
+
print(f"Duration: {max(G.nodes[node]['pos'][0] for node in longest_path) - min(G.nodes[node]['pos'][0] for node in longest_path):.2f}")
|
185 |
+
if shortest_path:
|
186 |
+
print(f"\nPath with the shortest duration: {' -> '.join(map(str, shortest_path))}")
|
187 |
+
print(f"Duration: {max(G.nodes[node]['pos'][0] for node in shortest_path) - min(G.nodes[node]['pos'][0] for node in shortest_path):.2f}")
|
188 |
|
189 |
+
draw_global_tree_3d(G)
|
|
|
|
|
|
|
190 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
if best_path:
|
192 |
+
draw_path_3d(G, best_path, 'best_path.png', 'blue')
|
|
|
193 |
if worst_path:
|
194 |
+
draw_path_3d(G, worst_path, 'worst_path.png', 'red')
|
195 |
+
if longest_path:
|
196 |
+
draw_path_3d(G, longest_path, 'longest_duration_path.png', 'green')
|
197 |
+
if shortest_path:
|
198 |
+
draw_path_3d(G, shortest_path, 'shortest_duration_path.png', 'purple')
|
|
|
|
|
|
|
199 |
|
200 |
|
201 |
if __name__ == "__main__":
|
|
|
205 |
mode = sys.argv[1]
|
206 |
input_file = sys.argv[2] if len(sys.argv) > 2 else None
|
207 |
main(mode, input_file)
|
|
|
|
requirements.txt
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
-
|
2 |
torch
|
|
|
3 |
transformers
|
4 |
-
accelerate
|
|
|
|
1 |
+
gradio
|
2 |
torch
|
3 |
+
huggingface_hub
|
4 |
transformers
|
5 |
+
accelerate
|
6 |
+
bitsandbytes
|