Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 Haotian Liu | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Optional, Tuple | |
import torch | |
from transformers import AutoConfig, AutoModelForCausalLM, MptConfig, MptForCausalLM, MptModel, GenerationConfig | |
from llava.model.llava_arch import LlavaMetaModel, LlavaMetaForCausalLM | |
class LlavaMptConfig(MptConfig): | |
model_type = "llava_mpt" | |
class LlavaMptModel(LlavaMetaModel, MptModel): | |
config_class = LlavaMptConfig | |
def __init__(self, config: MptConfig): | |
config.hidden_size = config.d_model | |
super(LlavaMptModel, self).__init__(config) | |
def embed_tokens(self, x): | |
return self.wte(x) | |
class LlavaMptForCausalLM(MptForCausalLM, LlavaMetaForCausalLM): | |
config_class = LlavaMptConfig | |
supports_gradient_checkpointing = True | |
def __init__(self, config): | |
super(MptForCausalLM, self).__init__(config) | |
config.model_type = "llava_mpt" | |
config.rope_scaling = None | |
self.generation_config = GenerationConfig( | |
temperature=0.0, | |
max_new_tokens=1024, | |
do_sample=False, | |
top_p=None, | |
) | |
self.transformer = LlavaMptModel(config) | |
self.lm_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_model(self): | |
return self.transformer | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, LlavaMptModel): | |
module.gradient_checkpointing = value | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position=None, | |
images=None, | |
): | |
input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images) | |
return super().forward( | |
input_ids, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
labels=labels, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): | |
images = kwargs.pop("images", None) | |
_inputs = super().prepare_inputs_for_generation(input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs) | |
_inputs["images"] = images | |
return _inputs | |
AutoConfig.register("llava_mpt", LlavaMptConfig) | |
AutoModelForCausalLM.register(LlavaMptConfig, LlavaMptForCausalLM) | |