Spaces:
Running
on
Zero
Running
on
Zero
# from .demo_modelpart import InferenceDemo | |
import gradio as gr | |
import os | |
# import time | |
import cv2 | |
# import copy | |
import torch | |
import spaces | |
import numpy as np | |
from llava import conversation as conversation_lib | |
from llava.constants import DEFAULT_IMAGE_TOKEN | |
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
from llava.conversation import conv_templates, SeparatorStyle | |
from llava.model.builder import load_pretrained_model | |
from llava.utils import disable_torch_init | |
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria | |
from PIL import Image | |
import requests | |
from PIL import Image | |
from io import BytesIO | |
from transformers import TextStreamer | |
class InferenceDemo(object): | |
def __init__(self,args,model_path,tokenizer, model, image_processor, context_len) -> None: | |
disable_torch_init() | |
self.tokenizer, self.model, self.image_processor, self.context_len = tokenizer, model, image_processor, context_len | |
if "llama-2" in model_name.lower(): | |
conv_mode = "llava_llama_2" | |
elif "v1" in model_name.lower(): | |
conv_mode = "llava_v1" | |
elif "mpt" in model_name.lower(): | |
conv_mode = "mpt" | |
elif 'qwen' in model_name.lower(): | |
conv_mode = "qwen_1_5" | |
else: | |
conv_mode = "llava_v0" | |
if args.conv_mode is not None and conv_mode != args.conv_mode: | |
print("[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format(conv_mode, args.conv_mode, args.conv_mode)) | |
else: | |
args.conv_mode = conv_mode | |
self.conv_mode=conv_mode | |
self.conversation = conv_templates[args.conv_mode].copy() | |
self.num_frames = args.num_frames | |
def is_valid_video_filename(name): | |
video_extensions = ['avi', 'mp4', 'mov', 'mkv', 'flv', 'wmv', 'mjpeg'] | |
ext = name.split('.')[-1].lower() | |
if ext in video_extensions: | |
return True | |
else: | |
return False | |
def sample_frames(video_file, num_frames) : | |
video = cv2.VideoCapture(video_file) | |
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) | |
interval = total_frames // num_frames | |
frames = [] | |
for i in range(total_frames): | |
ret, frame = video.read() | |
pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
if not ret: | |
continue | |
if i % interval == 0: | |
frames.append(pil_img) | |
video.release() | |
return frames | |
def load_image(image_file): | |
if image_file.startswith("http") or image_file.startswith("https"): | |
response = requests.get(image_file) | |
if response.status_code == 200: | |
image = Image.open(BytesIO(response.content)).convert("RGB") | |
else: | |
print('failed to load the image') | |
else: | |
print('Load image from local file') | |
print(image_file) | |
image = Image.open(image_file).convert("RGB") | |
return image | |
def clear_history(history): | |
our_chatbot.conversation = conv_templates[our_chatbot.conv_mode].copy() | |
return None | |
def clear_response(history): | |
for index_conv in range(1, len(history)): | |
# loop until get a text response from our model. | |
conv = history[-index_conv] | |
if not (conv[0] is None): | |
break | |
question = history[-index_conv][0] | |
history = history[:-index_conv] | |
return history, question | |
def print_like_dislike(x: gr.LikeData): | |
print(x.index, x.value, x.liked) | |
def add_message(history, message): | |
# history=[] | |
global our_chatbot | |
if len(history)==0: | |
our_chatbot = InferenceDemo(args,model_path,tokenizer, model, image_processor, context_len) | |
for x in message["files"]: | |
history.append(((x,), None)) | |
if message["text"] is not None: | |
history.append((message["text"], None)) | |
return history, gr.MultimodalTextbox(value=None, interactive=False) | |
def bot(history): | |
text=history[-1][0] | |
images_this_term=[] | |
text_this_term='' | |
# import pdb;pdb.set_trace() | |
num_new_images = 0 | |
for i,message in enumerate(history[:-1]): | |
if type(message[0]) is tuple: | |
images_this_term.append(message[0][0]) | |
if is_valid_video_filename(message[0][0]): | |
num_new_images+=our_chatbot.num_frames | |
else: | |
num_new_images+=1 | |
else: | |
num_new_images=0 | |
# for message in history[-i-1:]: | |
# images_this_term.append(message[0][0]) | |
assert len(images_this_term)>0, "must have an image" | |
# image_files = (args.image_file).split(',') | |
# image = [load_image(f) for f in images_this_term if f] | |
image_list=[] | |
for f in images_this_term: | |
if is_valid_video_filename(f): | |
image_list+=sample_frames(f, our_chatbot.num_frames) | |
else: | |
image_list.append(load_image(f)) | |
image_tensor = [our_chatbot.image_processor.preprocess(f, return_tensors="pt")["pixel_values"][0].half().to(our_chatbot.model.device) for f in image_list] | |
image_tensor = torch.stack(image_tensor) | |
image_token = DEFAULT_IMAGE_TOKEN*num_new_images | |
# if our_chatbot.model.config.mm_use_im_start_end: | |
# inp = DEFAULT_IM_START_TOKEN + image_token + DEFAULT_IM_END_TOKEN + "\n" + inp | |
# else: | |
inp=text | |
inp = image_token+ "\n" + inp | |
our_chatbot.conversation.append_message(our_chatbot.conversation.roles[0], inp) | |
# image = None | |
our_chatbot.conversation.append_message(our_chatbot.conversation.roles[1], None) | |
prompt = our_chatbot.conversation.get_prompt() | |
input_ids = tokenizer_image_token(prompt, our_chatbot.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(our_chatbot.model.device) | |
stop_str = our_chatbot.conversation.sep if our_chatbot.conversation.sep_style != SeparatorStyle.TWO else our_chatbot.conversation.sep2 | |
keywords = [stop_str] | |
stopping_criteria = KeywordsStoppingCriteria(keywords, our_chatbot.tokenizer, input_ids) | |
streamer = TextStreamer(our_chatbot.tokenizer, skip_prompt=True, skip_special_tokens=True) | |
print(our_chatbot.model.device) | |
print(input_ids.device) | |
print(image_tensor.device) | |
# import pdb;pdb.set_trace() | |
with torch.inference_mode(): | |
output_ids = our_chatbot.model.generate(input_ids, images=image_tensor, do_sample=True, temperature=0.2, max_new_tokens=1024, streamer=streamer, use_cache=False, stopping_criteria=[stopping_criteria]) | |
outputs = our_chatbot.tokenizer.decode(output_ids[0]).strip() | |
if outputs.endswith(stop_str): | |
outputs = outputs[:-len(stop_str)] | |
our_chatbot.conversation.messages[-1][-1] = outputs | |
history[-1]=[text,outputs] | |
return history | |
txt = gr.Textbox( | |
scale=4, | |
show_label=False, | |
placeholder="Enter text and press enter.", | |
container=False, | |
) | |
with gr.Blocks() as demo: | |
# Informations | |
title_markdown = (""" | |
# LLaVA-NeXT Interleave | |
[[Blog]](https://llava-vl.github.io/blog/2024-06-16-llava-next-interleave/) [[Code]](https://github.com/LLaVA-VL/LLaVA-NeXT) [[Model]](https://huggingface.co/lmms-lab/llava-next-interleave-7b) | |
""") | |
tos_markdown = (""" | |
### TODO!. Terms of use | |
By using this service, users are required to agree to the following terms: | |
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research. | |
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator. | |
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality. | |
""") | |
learn_more_markdown = (""" | |
### TODO!. License | |
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation. | |
""") | |
models = [ | |
"LLaVA-Interleave-7B", | |
] | |
cur_dir = os.path.dirname(os.path.abspath(__file__)) | |
gr.Markdown(title_markdown) | |
with gr.Column(): | |
with gr.Row(): | |
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image","video"], placeholder="Enter message or upload file...", show_label=False) | |
gr.Examples(examples=[ | |
[{"files": [f"{cur_dir}/examples/code1.jpeg",f"{cur_dir}/examples/code2.jpeg"], "text": "Please pay attention to the movement of the object from the first image to the second image, then write a HTML code to show this movement."}], | |
[{"files": [f"{cur_dir}/examples/shub.jpg",f"{cur_dir}/examples/shuc.jpg",f"{cur_dir}/examples/shud.jpg"], "text": "what is fun about the images?"}], | |
[{"files": [f"{cur_dir}/examples/iphone-15-price-1024x576.jpg",f"{cur_dir}/examples/dynamic-island-1024x576.jpg",f"{cur_dir}/examples/iphone-15-colors-1024x576.jpg",f"{cur_dir}/examples/Iphone-15-Usb-c-charger-1024x576.jpg",f"{cur_dir}/examples/A-17-processors-1024x576.jpg"], "text": "The images are the PPT of iPhone 15 review. can you summarize the main information?"}], | |
[{"files": [f"{cur_dir}/examples/fangao3.jpeg",f"{cur_dir}/examples/fangao2.jpeg",f"{cur_dir}/examples/fangao1.jpeg"], "text": "Do you kown who draw these paintings?"}], | |
[{"files": [f"{cur_dir}/examples/oprah-winfrey-resume.png",f"{cur_dir}/examples/steve-jobs-resume.jpg"], "text": "Hi, there are two candidates, can you provide a brief description for each of them for me?"}], | |
[{"files": [f"{cur_dir}/examples/original_bench.jpeg",f"{cur_dir}/examples/changed_bench.jpeg"], "text": "How to edit image1 to make it look like image2?"}], | |
[{"files": [f"{cur_dir}/examples/twitter2.jpeg",f"{cur_dir}/examples/twitter3.jpeg",f"{cur_dir}/examples/twitter4.jpeg"], "text": "Please write a twitter blog post with the images."}], | |
# [{"files": [f"{cur_dir}/examples/twitter3.jpeg",f"{cur_dir}/examples/twitter4.jpeg"], "text": "Please write a twitter blog post with the images."}], | |
# [{"files": [f"playground/demo/examples/lion1_.mp4",f"playground/demo/examples/lion2_.mp4"], "text": "The input contains two videos, the first half is the first video and the second half is the second video. What is the difference between the two videos?"}], | |
], inputs=[chat_input], label="Compare images: ",examples_per_page=3) | |
with gr.Column(): | |
chatbot = gr.Chatbot( | |
[], | |
elem_id="chatbot", | |
bubble_full_width=False | |
) | |
with gr.Row(): | |
upvote_btn = gr.Button(value="๐ Upvote", interactive=True) | |
downvote_btn = gr.Button(value="๐ Downvote", interactive=True) | |
flag_btn = gr.Button(value="โ ๏ธ Flag", interactive=True) | |
#stop_btn = gr.Button(value="โน๏ธ Stop Generation", interactive=True) | |
regenerate_btn = gr.Button(value="๐ Regenerate", interactive=True) | |
clear_btn = gr.Button(value="๐๏ธ Clear history", interactive=True) | |
chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input]) | |
bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response") | |
bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input]) | |
chatbot.like(print_like_dislike, None, None) | |
clear_btn.click(fn=clear_history, inputs=[chatbot], outputs=[chatbot], api_name="clear_all") | |
demo.queue() | |
if __name__ == "__main__": | |
import argparse | |
argparser = argparse.ArgumentParser() | |
argparser.add_argument("--server_name", default="0.0.0.0", type=str) | |
argparser.add_argument("--port", default="6123", type=str) | |
argparser.add_argument("--model_path", default="lmms-lab/llava-next-interleave-qwen-7b", type=str) | |
# argparser.add_argument("--model-path", type=str, default="facebook/opt-350m") | |
argparser.add_argument("--model-base", type=str, default=None) | |
argparser.add_argument("--num-gpus", type=int, default=1) | |
argparser.add_argument("--conv-mode", type=str, default=None) | |
argparser.add_argument("--temperature", type=float, default=0.2) | |
argparser.add_argument("--max-new-tokens", type=int, default=512) | |
argparser.add_argument("--num_frames", type=int, default=16) | |
argparser.add_argument("--load-8bit", action="store_true") | |
argparser.add_argument("--load-4bit", action="store_true") | |
argparser.add_argument("--debug", action="store_true") | |
args = argparser.parse_args() | |
model_path = args.model_path | |
filt_invalid="cut" | |
model_name = get_model_name_from_path(args.model_path) | |
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit) | |
model=model.to(torch.device('cuda')) | |
our_chatbot = None | |
# import pdb;pdb.set_trace() | |
# try: | |
demo.launch() | |