netflypsb commited on
Commit
84316a5
·
verified ·
1 Parent(s): 5f0b36d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +66 -0
app.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import yfinance as yf
3
+ import pandas as pd
4
+ import numpy as np
5
+ import matplotlib.pyplot as plt
6
+
7
+ def fetch_data(ticker, start_date, end_date):
8
+ data = yf.download(ticker, start=start_date, end=end_date)
9
+ return data
10
+
11
+ def calculate_indicators(data):
12
+ # Bollinger Bands
13
+ data['Middle Band'] = data['Close'].rolling(window=20).mean()
14
+ data['Upper Band'] = data['Middle Band'] + 1.96 * data['Close'].rolling(window=20).std()
15
+ data['Lower Band'] = data['Middle Band'] - 1.96 * data['Close'].rolling(window=20).std()
16
+
17
+ # Moving Averages
18
+ data['MA5'] = data['Close'].rolling(window=5).mean()
19
+ data['MA10'] = data['Close'].rolling(window=10).mean()
20
+
21
+ return data
22
+
23
+ def identify_signals(data):
24
+ data['Buy Signal'] = ((data['Close'] < data['Lower Band']) & (data['Close'].shift(1) > data['Lower Band'])) | \
25
+ ((data['Close'] > data['MA5']) & (data['Close'].shift(1) < data['MA5']))
26
+ data['Sell Signal'] = ((data['Close'] > data['Upper Band']) & (data['Close'].shift(1) < data['Upper Band'])) | \
27
+ ((data['Close'] < data['MA5']) & (data['Close'].shift(1) > data['MA5']))
28
+ return data
29
+
30
+ def plot_data(data):
31
+ plt.figure(figsize=(10, 5))
32
+ plt.plot(data['Close'], label='Close Price')
33
+ plt.plot(data['Upper Band'], label='Upper Bollinger Band', linestyle='--')
34
+ plt.plot(data['Middle Band'], label='Middle Bollinger Band', linestyle='--')
35
+ plt.plot(data['Lower Band'], label='Lower Bollinger Band', linestyle='--')
36
+ plt.plot(data['MA5'], label='5-Day MA', color='green', linestyle='-.')
37
+ plt.plot(data['MA10'], label='10-Day MA', color='red', linestyle='-.')
38
+
39
+ buy_signals = data[data['Buy Signal']]
40
+ sell_signals = data[data['Sell Signal']]
41
+ plt.scatter(buy_signals.index, buy_signals['Close'], marker='^', color='green', s=100, label='Buy Signal')
42
+ plt.scatter(sell_signals.index, sell_signals['Close'], marker='v', color='red', s=100, label='Sell Signal')
43
+
44
+ plt.title('Stock Price and Trading Signals')
45
+ plt.xlabel('Date')
46
+ plt.ylabel('Price')
47
+ plt.legend()
48
+ plt.grid(True)
49
+ plt.show()
50
+
51
+ def main():
52
+ st.title("OMA Ally BBMA Trading Strategy Visualization")
53
+ ticker = st.text_input("Enter the ticker symbol, e.g., 'AAPL'")
54
+ start_date = st.date_input("Select the start date")
55
+ end_date = st.date_input("Select the end date")
56
+
57
+ if st.button("Analyze"):
58
+ data = fetch_data(ticker, start_date, end_date)
59
+ data = calculate_indicators(data)
60
+ data = identify_signals(data)
61
+ plot_data(data)
62
+ st.pyplot(plt)
63
+
64
+ if __name__ == "__main__":
65
+ main()
66
+