Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import yfinance as yf
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
|
7 |
+
def fetch_data(ticker, start_date, end_date):
|
8 |
+
data = yf.download(ticker, start=start_date, end=end_date)
|
9 |
+
return data
|
10 |
+
|
11 |
+
def calculate_indicators(data):
|
12 |
+
# Bollinger Bands
|
13 |
+
data['Middle Band'] = data['Close'].rolling(window=20).mean()
|
14 |
+
data['Upper Band'] = data['Middle Band'] + 1.96 * data['Close'].rolling(window=20).std()
|
15 |
+
data['Lower Band'] = data['Middle Band'] - 1.96 * data['Close'].rolling(window=20).std()
|
16 |
+
|
17 |
+
# Moving Averages
|
18 |
+
data['MA5'] = data['Close'].rolling(window=5).mean()
|
19 |
+
data['MA10'] = data['Close'].rolling(window=10).mean()
|
20 |
+
|
21 |
+
return data
|
22 |
+
|
23 |
+
def identify_signals(data):
|
24 |
+
data['Buy Signal'] = ((data['Close'] < data['Lower Band']) & (data['Close'].shift(1) > data['Lower Band'])) | \
|
25 |
+
((data['Close'] > data['MA5']) & (data['Close'].shift(1) < data['MA5']))
|
26 |
+
data['Sell Signal'] = ((data['Close'] > data['Upper Band']) & (data['Close'].shift(1) < data['Upper Band'])) | \
|
27 |
+
((data['Close'] < data['MA5']) & (data['Close'].shift(1) > data['MA5']))
|
28 |
+
return data
|
29 |
+
|
30 |
+
def plot_data(data):
|
31 |
+
plt.figure(figsize=(10, 5))
|
32 |
+
plt.plot(data['Close'], label='Close Price')
|
33 |
+
plt.plot(data['Upper Band'], label='Upper Bollinger Band', linestyle='--')
|
34 |
+
plt.plot(data['Middle Band'], label='Middle Bollinger Band', linestyle='--')
|
35 |
+
plt.plot(data['Lower Band'], label='Lower Bollinger Band', linestyle='--')
|
36 |
+
plt.plot(data['MA5'], label='5-Day MA', color='green', linestyle='-.')
|
37 |
+
plt.plot(data['MA10'], label='10-Day MA', color='red', linestyle='-.')
|
38 |
+
|
39 |
+
buy_signals = data[data['Buy Signal']]
|
40 |
+
sell_signals = data[data['Sell Signal']]
|
41 |
+
plt.scatter(buy_signals.index, buy_signals['Close'], marker='^', color='green', s=100, label='Buy Signal')
|
42 |
+
plt.scatter(sell_signals.index, sell_signals['Close'], marker='v', color='red', s=100, label='Sell Signal')
|
43 |
+
|
44 |
+
plt.title('Stock Price and Trading Signals')
|
45 |
+
plt.xlabel('Date')
|
46 |
+
plt.ylabel('Price')
|
47 |
+
plt.legend()
|
48 |
+
plt.grid(True)
|
49 |
+
plt.show()
|
50 |
+
|
51 |
+
def main():
|
52 |
+
st.title("OMA Ally BBMA Trading Strategy Visualization")
|
53 |
+
ticker = st.text_input("Enter the ticker symbol, e.g., 'AAPL'")
|
54 |
+
start_date = st.date_input("Select the start date")
|
55 |
+
end_date = st.date_input("Select the end date")
|
56 |
+
|
57 |
+
if st.button("Analyze"):
|
58 |
+
data = fetch_data(ticker, start_date, end_date)
|
59 |
+
data = calculate_indicators(data)
|
60 |
+
data = identify_signals(data)
|
61 |
+
plot_data(data)
|
62 |
+
st.pyplot(plt)
|
63 |
+
|
64 |
+
if __name__ == "__main__":
|
65 |
+
main()
|
66 |
+
|