Spaces:
Runtime error
Runtime error
neelsahu
commited on
Commit
·
ebce3fb
1
Parent(s):
e8bae94
hindi abusive api added
Browse files
__pycache__/clean.cpython-38.pyc
ADDED
Binary file (1.15 kB). View file
|
|
__pycache__/language_detection.cpython-38.pyc
ADDED
Binary file (3.53 kB). View file
|
|
__pycache__/language_detection.cpython-39.pyc
CHANGED
Binary files a/__pycache__/language_detection.cpython-39.pyc and b/__pycache__/language_detection.cpython-39.pyc differ
|
|
app.py
CHANGED
@@ -6,6 +6,8 @@ import nltk
|
|
6 |
nltk.download('wordnet')
|
7 |
import numpy as np
|
8 |
import language_detection
|
|
|
|
|
9 |
print("all imports worked")
|
10 |
# Load pre-trained model
|
11 |
model = joblib.load('model_joblib.pkl')
|
@@ -13,6 +15,12 @@ print("model load ")
|
|
13 |
tf = joblib.load('tf_joblib.pkl')
|
14 |
print("tfidf load ")
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# Define function to predict whether sentence is abusive or not
|
17 |
def predict_abusive_lang(text):
|
18 |
print("original text ", text)
|
@@ -34,8 +42,22 @@ def predict_abusive_lang(text):
|
|
34 |
else :
|
35 |
return ["Please write something in the comment box..","No cleaned text"]
|
36 |
elif lang=='hi':
|
|
|
37 |
print("using hugging face api")
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
else :
|
40 |
return ["UN","No cleaned text"]
|
41 |
|
|
|
6 |
nltk.download('wordnet')
|
7 |
import numpy as np
|
8 |
import language_detection
|
9 |
+
import requests
|
10 |
+
|
11 |
print("all imports worked")
|
12 |
# Load pre-trained model
|
13 |
model = joblib.load('model_joblib.pkl')
|
|
|
15 |
tf = joblib.load('tf_joblib.pkl')
|
16 |
print("tfidf load ")
|
17 |
|
18 |
+
def query(payload):
|
19 |
+
API_URL = "https://api-inference.huggingface.co/models/Hate-speech-CNERG/hindi-abusive-MuRIL"
|
20 |
+
headers = {"Authorization": "Bearer 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"}
|
21 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
22 |
+
return response.json()
|
23 |
+
|
24 |
# Define function to predict whether sentence is abusive or not
|
25 |
def predict_abusive_lang(text):
|
26 |
print("original text ", text)
|
|
|
42 |
else :
|
43 |
return ["Please write something in the comment box..","No cleaned text"]
|
44 |
elif lang=='hi':
|
45 |
+
|
46 |
print("using hugging face api")
|
47 |
+
output = query({
|
48 |
+
"inputs": text#"खान चाचा को मेरा सला"
|
49 |
+
})
|
50 |
+
print(output, len(output))
|
51 |
+
# if(len(output))
|
52 |
+
l_0 = float(output[0][0]['score'])
|
53 |
+
l_1 = float(output[0][1]['score'])
|
54 |
+
if output[0][0]['label']=='LABEL_1' :
|
55 |
+
if l_0>l_1:
|
56 |
+
return ["AB",text]
|
57 |
+
|
58 |
+
else :
|
59 |
+
return ["NA",text]
|
60 |
+
|
61 |
else :
|
62 |
return ["UN","No cleaned text"]
|
63 |
|