Spaces:
Sleeping
Sleeping
import os | |
from atoms_detection.cv_detection import CVDetection | |
from atoms_detection.evaluation import Evaluation | |
from utils.paths import CROPS_PATH, CROPS_DATASET, MODELS_PATH, LOGS_PATH, DETECTION_PATH, PREDS_PATH, DATASET_PATH | |
from utils.constants import ModelArgs | |
extension_name = "trial" | |
threshold = 0.21 | |
architecture = ModelArgs.BASICCNN | |
ckpt_filename = os.path.join(MODELS_PATH, "basic_replicate.ckpt") | |
dataset_csv = os.path.join(DATASET_PATH, "Fe_dataset.csv") | |
inference_cache_path = os.path.join(PREDS_PATH, f"cv_fe_detection_{extension_name}") | |
for threshold in [0.1, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25]: | |
detections_path = os.path.join(DETECTION_PATH, f"cv_fe_detection_{extension_name}", | |
f"cv_fe_detection_{extension_name}_{threshold}") | |
print(f"Detecting atoms on test data with threshold={threshold}...") | |
detection = CVDetection( | |
dataset_csv=dataset_csv, | |
threshold=threshold, | |
detections_path=detections_path, | |
inference_cache_path=inference_cache_path | |
) | |
detection.run() | |
logging_filename = os.path.join(LOGS_PATH, f"cv_fe_evaluation_{extension_name}", | |
f"cv_fe_evaluation_{extension_name}_{threshold}.csv") | |
evaluation = Evaluation( | |
coords_csv=dataset_csv, | |
predictions_path=detections_path, | |
logging_filename=logging_filename | |
) | |
evaluation.run() | |