atom-detection / atoms_detection /cv_fe_detection_evaluation.py
Romain Graux
Initial commit with ml code and webapp
b2ffc9b
raw
history blame
1.45 kB
import os
from atoms_detection.cv_detection import CVDetection
from atoms_detection.evaluation import Evaluation
from utils.paths import CROPS_PATH, CROPS_DATASET, MODELS_PATH, LOGS_PATH, DETECTION_PATH, PREDS_PATH, DATASET_PATH
from utils.constants import ModelArgs
extension_name = "trial"
threshold = 0.21
architecture = ModelArgs.BASICCNN
ckpt_filename = os.path.join(MODELS_PATH, "basic_replicate.ckpt")
dataset_csv = os.path.join(DATASET_PATH, "Fe_dataset.csv")
inference_cache_path = os.path.join(PREDS_PATH, f"cv_fe_detection_{extension_name}")
for threshold in [0.1, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25]:
detections_path = os.path.join(DETECTION_PATH, f"cv_fe_detection_{extension_name}",
f"cv_fe_detection_{extension_name}_{threshold}")
print(f"Detecting atoms on test data with threshold={threshold}...")
detection = CVDetection(
dataset_csv=dataset_csv,
threshold=threshold,
detections_path=detections_path,
inference_cache_path=inference_cache_path
)
detection.run()
logging_filename = os.path.join(LOGS_PATH, f"cv_fe_evaluation_{extension_name}",
f"cv_fe_evaluation_{extension_name}_{threshold}.csv")
evaluation = Evaluation(
coords_csv=dataset_csv,
predictions_path=detections_path,
logging_filename=logging_filename
)
evaluation.run()