Spaces:
Sleeping
Sleeping
File size: 10,677 Bytes
b2ffc9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
from typing import Optional, Tuple, List
import os
import numpy as np
import scipy.optimize
from PIL import Image
import pandas as pd
from matplotlib import pyplot as plt
from matplotlib import patches
from utils.constants import Split
from atoms_detection.dataset import CoordinatesDataset
def bbox_iou(bb1, bb2):
assert bb1[0] <= bb1[1]
assert bb1[2] <= bb1[3]
assert bb2[0] <= bb2[1]
assert bb2[2] <= bb2[3]
# determine the coordinates of the intersection rectangle
x_left = max(bb1[0], bb2[0])
y_top = max(bb1[2], bb2[2])
x_right = min(bb1[1], bb2[1])
y_bottom = min(bb1[3], bb2[3])
if x_right < x_left or y_bottom < y_top:
return 0.0
# The intersection of two axis-aligned bounding boxes is always an
# axis-aligned bounding box
intersection_area = (x_right - x_left) * (y_bottom - y_top)
# compute the area of both AABBs
bb1_area = (bb1[1] - bb1[0]) * (bb1[3] - bb1[2])
bb2_area = (bb2[1] - bb2[0]) * (bb2[3] - bb2[2])
# compute the intersection over union by taking the intersection
# area and dividing it by the sum of prediction + ground-truth
# areas - the interesection area
iou = intersection_area / float(bb1_area + bb2_area - intersection_area)
assert iou >= 0.0
assert iou <= 1.0
return iou
def match_bboxes(iou_matrix, IOU_THRESH=0.5):
'''
Given sets of true and predicted bounding-boxes,
determine the best possible match.
Returns
-------
(idxs_true, idxs_pred, ious, labels)
idxs_true, idxs_pred : indices into gt and pred for matches
ious : corresponding IOU value of each match
labels: vector of 0/1 values for the list of detections
'''
n_true, n_pred = iou_matrix.shape
MIN_IOU = 0.0
MAX_DIST = 1.0
if n_pred > n_true:
# there are more predictions than ground-truth - add dummy rows
diff = n_pred - n_true
iou_matrix = np.concatenate((iou_matrix,
np.full((diff, n_pred), MIN_IOU)),
axis=0)
if n_true > n_pred:
# more ground-truth than predictions - add dummy columns
diff = n_true - n_pred
iou_matrix = np.concatenate((iou_matrix,
np.full((n_true, diff), MIN_IOU)),
axis=1)
# call the Hungarian matching
idxs_true, idxs_pred = scipy.optimize.linear_sum_assignment(1 - iou_matrix)
if (not idxs_true.size) or (not idxs_pred.size):
ious = np.array([])
else:
ious = iou_matrix[idxs_true, idxs_pred]
# remove dummy assignments
sel_pred = idxs_pred < n_pred
idx_pred_actual = idxs_pred[sel_pred]
idx_gt_actual = idxs_true[sel_pred]
ious_actual = iou_matrix[idx_gt_actual, idx_pred_actual]
sel_valid = (ious_actual > IOU_THRESH)
label = sel_valid.astype(int)
return idx_gt_actual[sel_valid], idx_pred_actual[sel_valid], ious_actual[sel_valid], label
class Evaluation:
def __init__(self, coords_csv: str, predictions_path: str, logging_filename: str):
self.coordinates_dataset = CoordinatesDataset(coords_csv)
self.predictions_path = predictions_path
self.logging_filename = logging_filename
if not os.path.exists(os.path.dirname(self.logging_filename)):
os.makedirs(os.path.dirname(self.logging_filename))
self.logs_df = pd.DataFrame(columns=["Filename", "Precision", "Recall", "F1Score"])
self.threshold = 0.5
def get_predictions_dict(self, image_filename: str) -> List[Tuple[int, int]]:
img_name = os.path.splitext(os.path.basename(image_filename))[0]
preds_csv = os.path.join(self.predictions_path, f"{img_name}.csv")
df = pd.read_csv(preds_csv)
pred_coords_list = []
for idx, row in df.iterrows():
pred_coords_list.append((row["x"], row["y"]))
return pred_coords_list
@staticmethod
def center_coords_to_bbox(gt_coord: Tuple[int, int]) -> Tuple[int, int, int, int]:
box_rwidth, box_rheight = 10, 10
gt_bbox = (
gt_coord[0] - box_rwidth,
gt_coord[0] + box_rwidth + 1,
gt_coord[1] - box_rheight,
gt_coord[1] + box_rheight + 1
)
return gt_bbox
def eval_matches(
self,
gt_bboxes_dict: List[Tuple[int, int, int, int]],
atoms_bbox_dict: List[Tuple[int, int, int, int]],
iou_threshold: float = 0.5
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
iou_matrix = np.zeros((len(gt_bboxes_dict), len(atoms_bbox_dict))).astype(np.float32)
for gt_idx, gt_bbox in enumerate(gt_bboxes_dict):
for atom_idx, atom_bbox in enumerate(atoms_bbox_dict):
iou = bbox_iou(gt_bbox, atom_bbox)
iou_matrix[gt_idx, atom_idx] = iou
idxs_true, idxs_pred, ious, labels = match_bboxes(iou_matrix, IOU_THRESH=iou_threshold)
return idxs_true, idxs_pred, ious, labels
@staticmethod
def eval_metrics(n_matches: int, n_gt: int, n_pred: int) -> Tuple[float, float]:
precision = n_matches / n_pred if n_pred > 0 else 0.0
if n_gt == 0:
raise RuntimeError("No ground truth atoms???")
recall = n_matches / n_gt
return precision, recall
def atom_coords_to_bboxes(self, atoms_coords_dict: List[Tuple[int, int]]) -> List[Tuple[int, int, int, int]]:
atom_bboxes_dict = []
for atom_center in atoms_coords_dict:
atom_fixed_bbox = self.center_coords_to_bbox(atom_center)
atom_bboxes_dict.append(atom_fixed_bbox)
return atom_bboxes_dict
def gt_coord_to_bboxes(self, gt_coordinates_dict: List[Tuple[int, int]]) -> List[Tuple[int, int, int, int]]:
gt_bboxes_list = []
for gt_coord in gt_coordinates_dict:
gt_bbox = self.center_coords_to_bbox(gt_coord)
gt_bboxes_list.append(gt_bbox)
return gt_bboxes_list
@staticmethod
def open_image(img_filename: str):
img = Image.open(img_filename)
np_img = np.asarray(img).astype(np.float32)
return np_img
def run(self, plot=False):
for image_path, coordinates_path in self.coordinates_dataset.iterate_data(Split.TEST):
img = self.open_image(image_path)
center_coords_dict = self.get_predictions_dict(image_path)
atoms_bboxes_dict = self.atom_coords_to_bboxes(center_coords_dict)
gt_coordinates = self.coordinates_dataset.load_coordinates(coordinates_path)
gt_bboxes_dict = self.gt_coord_to_bboxes(gt_coordinates)
# VISUALILZE gt & pred bboxes!
if plot:
plt.figure(figsize=(20, 20))
ax = plt.gca()
ax.imshow(img)
for gt_bbox in gt_bboxes_dict:
xy = (gt_bbox[0], gt_bbox[2])
width = gt_bbox[1] - gt_bbox[0]
height = gt_bbox[3] - gt_bbox[2]
rect = patches.Rectangle(xy, width, height, linewidth=3, edgecolor='r', facecolor='none')
ax.add_patch(rect)
for atom_bbox in atoms_bboxes_dict:
xy = (atom_bbox[0], atom_bbox[2])
width = atom_bbox[1] - atom_bbox[0]
height = atom_bbox[3] - atom_bbox[2]
rect = patches.Rectangle(xy, width, height, linewidth=2, edgecolor='g', facecolor='none')
ax.add_patch(rect)
plt.tight_layout()
plt.show()
idxs_true, idxs_pred, ious, labels = self.eval_matches(gt_bboxes_dict, atoms_bboxes_dict)
precision, recall = self.eval_metrics(n_matches=len(idxs_pred), n_gt=len(gt_coordinates), n_pred=len(atoms_bboxes_dict))
f1_score = 2*(precision*recall)/(precision+recall) if precision+recall > 0 else 0
if self.logging_filename:
# self.logs_df = self.logs_df.append({
# "Filename": os.path.basename(image_path),
# "Precision": precision,
# "Recall": recall,
# "F1Score": f1_score
# }, ignore_index=True)
# Change the old append method to the new concat method to avoid the warning
self.logs_df = pd.concat([self.logs_df, pd.DataFrame({
"Filename": os.path.basename(image_path),
"Precision": precision,
"Recall": recall,
"F1Score": f1_score
}, index=[0])], ignore_index=True)
format_args = (os.path.basename(image_path), f1_score, precision, recall)
print("{}: F1Score: {}, Precision: {}, Recall: {}".format(*format_args))
if self.logging_filename:
mean_precision = self.logs_df["Precision"].mean()
mean_recall = self.logs_df["Recall"].mean()
mean_f1_score = self.logs_df["F1Score"].mean()
std_precision = self.logs_df["Precision"].std()
std_recall = self.logs_df["Recall"].std()
std_f1_score = self.logs_df["F1Score"].std()
print(f"F1Score: {mean_f1_score}, Precision: {mean_precision}, Recall: {mean_recall}")
# self.logs_df = self.logs_df.append({
# "Filename": "Mean",
# "Precision": mean_precision,
# "Recall": mean_recall,
# "F1Score": mean_f1_score
# }, ignore_index=True)
# Change the old append method to the new concat method to avoid the warning
self.logs_df = pd.concat([self.logs_df, pd.DataFrame({
"Filename": "Mean",
"Precision": mean_precision,
"Recall": mean_recall,
"F1Score": mean_f1_score
}, index=[0])], ignore_index=True)
# self.logs_df = self.logs_df.append({
# "Filename": "Std",
# "Precision": std_precision,
# "Recall": std_recall,
# "F1Score": std_f1_score
# }, ignore_index=True)
# Change the old append method to the new concat method to avoid the warning
self.logs_df = pd.concat([self.logs_df, pd.DataFrame({
"Filename": "Std",
"Precision": std_precision,
"Recall": std_recall,
"F1Score": std_f1_score
}, index=[0])], ignore_index=True)
self.logs_df.to_csv(self.logging_filename, index=False, float_format='%.4f')
|