Spaces:
Sleeping
Sleeping
File size: 6,669 Bytes
b2ffc9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import os
import numpy as np
import pandas as pd
from PIL import Image
from atoms_detection.image_preprocessing import dl_prepro_image
from atoms_detection.dataset import CoordinatesDataset
from utils.paths import CROPS_PATH, CROPS_DATASET, PT_DATASET
from utils.constants import Split, CropsColumns
np.random.seed(777)
window_size = (21, 21)
halfx_window = ((window_size[0] - 1) // 2)
halfy_window = ((window_size[1] - 1) // 2)
def get_gaussian_kernel(size=33, mean=0, sigma=0.2):
# Initializing value of x-axis and y-axis
# in the range -1 to 1
x, y = np.meshgrid(np.linspace(-1, 1, size), np.linspace(-1, 1, size))
dst = np.sqrt(x * x + y * y)
# Calculating Gaussian array
kernel = np.exp(-((dst - mean) ** 2 / (2.0 * sigma ** 2)))
return kernel
def generate_support_img(coordinates, window_size):
support_img = np.zeros((1024, 1024))
kernel = get_gaussian_kernel(size=window_size[0])
halfx_window = ((window_size[0] - 1) // 2)
halfy_window = ((window_size[1] - 1) // 2)
for x, y in coordinates:
x_range = (x - halfx_window, x + halfx_window + 1)
y_range = (y - halfy_window, y + halfy_window + 1)
x_diff = [0, 0]
y_diff = [0, 0]
if x_range[0] < 0:
x_diff[0] = 0 - x_range[0]
if x_range[1] > 1024:
x_diff[1] = x_range[1] - 1024
if y_range[0] < 0:
y_diff[0] = 0 - y_range[0]
if y_range[1] > 1024:
y_diff[1] = y_range[1] - 1024
x_diff = tuple(int(item) for item in x_diff)
y_diff = tuple(int(item) for item in y_diff)
real_kernel = kernel[x_diff[0]:window_size[0] - x_diff[1], y_diff[0]:window_size[1] - y_diff[1]]
real_x_crop = (x_range[0] + x_diff[0], x_range[1] - x_diff[1])
real_y_crop = (y_range[0] + y_diff[0], y_range[1] - y_diff[1])
real_x_crop = tuple(int(item) for item in real_x_crop)
real_y_crop = tuple(int(item) for item in real_y_crop)
support_img[real_x_crop[0]:real_x_crop[1], real_y_crop[0]:real_y_crop[1]] += real_kernel
support_img = support_img.T
return support_img
def open_image(img_filename):
img = Image.open(img_filename)
np_img = np.asarray(img).astype(np.float32)
np_img = dl_prepro_image(np_img)
img = Image.fromarray(np_img)
return img
def create_crop(img: Image, x_center: int, y_center: int):
crop_coords = (
x_center - halfx_window,
y_center - halfy_window,
x_center + halfx_window + 1,
y_center + halfy_window + 1
)
crop = img.crop(crop_coords)
return crop
def create_crops_dataset(crops_folder: str, coords_csv: str, crops_dataset: str):
if not os.path.exists(crops_folder):
os.makedirs(crops_folder)
crop_name_list = []
orig_name_list = []
x_list = []
y_list = []
label_list = []
n_positives = 0
label = 1
dataset = CoordinatesDataset(coords_csv)
print('Creating positive crops...')
for data_filename, label_filename in dataset.iterate_data(Split.TRAIN):
if label_filename is None:
continue
print(data_filename)
orig_img_name = os.path.basename(data_filename)
img_name = os.path.splitext(orig_img_name)[0]
img = open_image(data_filename)
coordinates = dataset.load_coordinates(label_filename)
for x_center, y_center in coordinates:
crop = create_crop(img, x_center, y_center)
crop_name = "{}_{}_{}.tif".format(img_name, x_center, y_center)
crop.save(os.path.join(crops_folder, crop_name))
crop_name_list.append(crop_name)
orig_name_list.append(orig_img_name)
x_list.append(x_center)
y_list.append(y_center)
label_list.append(label)
n_positives += 1
label = 0
no_train_images = dataset.split_length(Split.TRAIN)
neg_crops_per_image = [n_positives // no_train_images + (1 if x < n_positives % no_train_images else 0) for x in range(no_train_images)]
print('Creating negative crops...')
for (data_filename, label_filename), no_neg_crops in zip(dataset.iterate_data(Split.TRAIN), neg_crops_per_image):
print(data_filename)
orig_img_name = os.path.basename(data_filename)
img_name = os.path.splitext(orig_img_name)[0]
img = open_image(data_filename)
if label_filename:
coordinates = dataset.load_coordinates(label_filename)
support_map = generate_support_img(coordinates, window_size)
else:
support_map = None
for _ in range(no_neg_crops):
x_rand = np.random.randint(0, 1024)
y_rand = np.random.randint(0, 1024)
if support_map is not None:
while support_map[x_rand, y_rand] != 0:
x_rand = np.random.randint(0, 1024)
y_rand = np.random.randint(0, 1024)
x_center, y_center = x_rand, y_rand
crop = create_crop(img, x_center, y_center)
crop_name = "{}_{}_{}.tif".format(img_name, x_center, y_center)
crop.save(os.path.join(crops_folder, crop_name))
crop_name_list.append(crop_name)
orig_name_list.append(orig_img_name)
x_list.append(x_center)
y_list.append(y_center)
label_list.append(label)
df_data = {
CropsColumns.FILENAME: crop_name_list,
CropsColumns.ORIGINAL: orig_name_list,
CropsColumns.X: x_list,
CropsColumns.Y: y_list,
CropsColumns.LABEL: label_list
}
df = pd.DataFrame(df_data, columns=[
CropsColumns.FILENAME,
CropsColumns.ORIGINAL,
CropsColumns.X,
CropsColumns.Y,
CropsColumns.LABEL
])
df_pos = df[df.Label == 1]
df_neg = df[df.Label == 0]
pos_len = len(df_pos)
neg_len = len(df_neg)
pos_train, pos_val, pos_test = np.split(df_pos.sample(frac=1), [int(0.8*pos_len), int(0.9*pos_len)])
neg_train, neg_val, neg_test = np.split(df_neg.sample(frac=1), [int(0.8*neg_len), int(0.9*neg_len)])
pos_train[CropsColumns.SPLIT] = Split.TRAIN
pos_val[CropsColumns.SPLIT] = Split.VAL
pos_test[CropsColumns.SPLIT] = Split.TEST
neg_train[CropsColumns.SPLIT] = Split.TRAIN
neg_val[CropsColumns.SPLIT] = Split.VAL
neg_test[CropsColumns.SPLIT] = Split.TEST
df_with_splits = pd.concat((pos_train, neg_train, pos_val, neg_val, pos_test, neg_test), axis=0)
df_with_splits.to_csv(crops_dataset, header=True, index=False)
if __name__ == "__main__":
create_crops_dataset(CROPS_PATH, PT_DATASET, CROPS_DATASET)
|