wzkariampuzha commited on
Commit
d647316
·
1 Parent(s): 24c9761

Update extract_abs.py

Browse files
Files changed (1) hide show
  1. extract_abs.py +5 -5
extract_abs.py CHANGED
@@ -279,9 +279,9 @@ def search_term_extraction(search_term:Union[int,str], maxResults:int, filtering
279
 
280
  #Returns a Pandas dataframe
281
  def streamlit_extraction(search_term:Union[int,str], maxResults:int, filtering:str, #for abstract search
282
- NER_pipeline:Any, entity_classes:Union[Set[str],List[str]], #for biobert extraction
283
- extract_diseases:bool, GARD_dict:Dict[str,str], max_length:int, #for disease extraction
284
- classify_model_vars:Tuple[Any,Any,Any,Any,Any]) -> Any: #for classification
285
 
286
  #Format of Output
287
  ordered_labels = order_labels(entity_classes)
@@ -301,7 +301,7 @@ def streamlit_extraction(search_term:Union[int,str], maxResults:int, filtering:s
301
 
302
  #Gather title+abstracts into a dictionary {pmid:abstract}
303
  pmid_abs = classify_abs.search_getAbs(search_term_list, maxResults, filtering)
304
- st.write("GATHERED " +str(len(pmid_abs))+" PubMed IDs.")
305
 
306
  i = 0
307
  my_bar = st.progress(i)
@@ -352,7 +352,7 @@ def API_extraction(search_term:Union[int,str], maxResults:int, filtering:str, #f
352
  model_outputs = [NER_pipeline(sent) for sent in sentences]
353
  extraction = parse_info(sentences, model_outputs, entity_classes, extract_diseases, GARD_dict, max_length)
354
  if extraction:
355
- extraction.update({'PMID':pmid, 'ABSTRACT':abstract, 'EPI_PROB':epi_prob, 'IsEpi':isEpi})
356
  extraction = OrderedDict([(term, extraction[term]) for term in json_output])
357
  results['entries'].append(extraction)
358
 
 
279
 
280
  #Returns a Pandas dataframe
281
  def streamlit_extraction(search_term:Union[int,str], maxResults:int, filtering:str, #for abstract search
282
+ NER_pipeline:Any, entity_classes:Union[Set[str],List[str]], #for biobert extraction
283
+ extract_diseases:bool, GARD_dict:Dict[str,str], max_length:int, #for disease extraction
284
+ classify_model_vars:Tuple[Any,Any,Any,Any,Any]) -> Any: #for classification
285
 
286
  #Format of Output
287
  ordered_labels = order_labels(entity_classes)
 
301
 
302
  #Gather title+abstracts into a dictionary {pmid:abstract}
303
  pmid_abs = classify_abs.search_getAbs(search_term_list, maxResults, filtering)
304
+ st.write("Gathered " +str(len(pmid_abs))+" PubMed IDs. Classifying and extracting epidemiology information...")
305
 
306
  i = 0
307
  my_bar = st.progress(i)
 
352
  model_outputs = [NER_pipeline(sent) for sent in sentences]
353
  extraction = parse_info(sentences, model_outputs, entity_classes, extract_diseases, GARD_dict, max_length)
354
  if extraction:
355
+ extraction.update({'PMID':pmid, 'ABSTRACT':abstract, 'EPI_PROB':epi_prob})
356
  extraction = OrderedDict([(term, extraction[term]) for term in json_output])
357
  results['entries'].append(extraction)
358