wzkariampuzha commited on
Commit
bd8a308
·
1 Parent(s): 221e51c

Update extract_abs.py

Browse files
Files changed (1) hide show
  1. extract_abs.py +4 -4
extract_abs.py CHANGED
@@ -290,9 +290,9 @@ def streamlit_extraction(search_term:Union[int,str], maxResults:int, filtering:s
290
  #Format of Output
291
  ordered_labels = order_labels(entity_classes)
292
  if extract_diseases:
293
- columns = ['PMID', 'ABSTRACT','EPI_PROB','IsEpi','IDS','DIS']+ordered_labels
294
  else:
295
- columns = ['PMID', 'ABSTRACT','EPI_PROB','IsEpi']+ordered_labels
296
 
297
  results = pd.DataFrame(columns=columns)
298
 
@@ -321,7 +321,7 @@ def streamlit_extraction(search_term:Union[int,str], maxResults:int, filtering:s
321
  model_outputs = [NER_pipeline(sent) for sent in sentences]
322
  extraction = parse_info(sentences, model_outputs, entity_classes, extract_diseases, GARD_dict, max_length)
323
  if extraction:
324
- extraction.update({'PMID':pmid, 'ABSTRACT':abstract, 'EPI_PROB':epi_prob, 'IsEpi':isEpi})
325
  #Slow dataframe update
326
  results = results.append(extraction, ignore_index=True)
327
  epidemiologic+=1
@@ -330,7 +330,7 @@ def streamlit_extraction(search_term:Union[int,str], maxResults:int, filtering:s
330
 
331
  sankey_data = (gathered, relevant,epidemiologic)
332
  st.write(len(results),'abstracts classified as epidemiological.')
333
- return results.sort_values('EPI_PROB', ascending=False), sankey_data
334
 
335
  #Identical to search_term_extraction, except it returns a JSON object instead of a df
336
  def API_extraction(search_term:Union[int,str], maxResults:int, filtering:str, #for abstract search
 
290
  #Format of Output
291
  ordered_labels = order_labels(entity_classes)
292
  if extract_diseases:
293
+ columns = ['PMID', 'ABSTRACT','PROB_OF_EPI','IsEpi','IDS','DIS']+ordered_labels
294
  else:
295
+ columns = ['PMID', 'ABSTRACT','PROB_OF_EPI','IsEpi']+ordered_labels
296
 
297
  results = pd.DataFrame(columns=columns)
298
 
 
321
  model_outputs = [NER_pipeline(sent) for sent in sentences]
322
  extraction = parse_info(sentences, model_outputs, entity_classes, extract_diseases, GARD_dict, max_length)
323
  if extraction:
324
+ extraction.update({'PMID':pmid, 'ABSTRACT':abstract, 'PROB_OF_EPI':epi_prob, 'IsEpi':isEpi})
325
  #Slow dataframe update
326
  results = results.append(extraction, ignore_index=True)
327
  epidemiologic+=1
 
330
 
331
  sankey_data = (gathered, relevant,epidemiologic)
332
  st.write(len(results),'abstracts classified as epidemiological.')
333
+ return results.sort_values('PROB_OF_EPI', ascending=False), sankey_data
334
 
335
  #Identical to search_term_extraction, except it returns a JSON object instead of a df
336
  def API_extraction(search_term:Union[int,str], maxResults:int, filtering:str, #for abstract search