Spaces:
Build error
Build error
import pandas as pd | |
from numpy import floor | |
#--- gensim --- | |
from nltk.tokenize import word_tokenize | |
from gensim.models.doc2vec import Doc2Vec, TaggedDocument | |
def conf_level(val): | |
""" Translates probability value into | |
a plain english statement """ | |
# https://www.dni.gov/files/documents/ICD/ICD%20203%20Analytic%20Standards.pdf | |
conf = "undefined" | |
if val < 0.05: | |
conf = "Extremely Low Probability" | |
elif val >= 0.05 and val < 0.20: | |
conf = "Very Low Probability" | |
elif val >= 0.20 and val < 0.45: | |
conf = "Low Probability" | |
elif val >= 0.45 and val < 0.55: | |
conf = "Middling Probability" | |
elif val >= 0.55 and val < 0.80: | |
conf = "High Probability" | |
elif val >= 0.80 and val < 0.95: | |
conf = "Very High Probability" | |
elif val >= 0.95: | |
conf = "Extremely High Probability" | |
return conf | |
def subsample_df(df=None, size=10, sample_type="Random Sample"): | |
""" Subsample the dataframe """ | |
size = int(size) | |
if sample_type == "Random Sample": | |
return df.sample(size) | |
elif sample_type == "Highest Probabilities": | |
df.sort_values(by="probability", ascending=False, inplace=True) | |
return df.head(size) | |
elif sample_type == "Lowest Probabilities": | |
df.sort_values(by="probability", ascending=True, inplace=True) | |
return df.head(size) | |
else: | |
# sample probabilities in the middle | |
tmp = df[(df["probability"] > 0.45) & (df["probability"] < 0.55)] | |
samp = min([size, int(tmp.shape[0])]) | |
return tmp.sample(samp) | |
def down_samp(embedding): | |
"""Down sample a data frame for altiar visualization """ | |
#total number of positive and negative sentiments in the class | |
total_size = embedding.groupby(['name', 'sentiment'],as_index=False).count() | |
user_data = 0 | |
if 'Your Sentences' in str(total_size['name']): | |
tmp = embedding.groupby(['name'],as_index=False).count() | |
val = int(tmp[tmp['name'] == "Your Sentences"]['source']) | |
user_data=val | |
max_sample = total_size.groupby('name').max()['source'] | |
#down sample to meeting altair's max values | |
#but keep the proportional representation of groups | |
down_samp = 1/(sum(max_sample)/(5000-user_data)) | |
max_samp = max_sample.apply(lambda x: floor(x*down_samp)).astype(int).to_dict() | |
max_samp['Your Sentences'] = user_data | |
#sample down for each group in the data frame | |
embedding= embedding.groupby('name').apply(lambda x: x.sample(n=max_samp.get(x.name))).reset_index(drop = True) | |
#order the embedding | |
return(embedding.sort_values(['sort_order'],ascending=True)) | |
def prep_embed_data(data,model): | |
''' Basic data tagging''' | |
tagged_data = [TaggedDocument(words=word_tokenize(_d.lower()), tags=[str(i)]) for i, _d in enumerate(data)] | |
embedding = [model.infer_vector(tagged_data[i].words) for i in range(len(tagged_data))] | |
return embedding | |
def prep_sentence_embedding(name,source, sentence, sentiment, sort_order,embed_model,idx,type="single"): | |
""" Prepare a custom sentence to add to the embedding""" | |
if type == "single": | |
#get vector embedding | |
tagged_data = TaggedDocument(words=word_tokenize(sentence.lower()), tags=['source']) | |
vector = embed_model.infer_vector(tagged_data.words) | |
tmp = { | |
'source': source, | |
'name': name, | |
'sort_order': sort_order, | |
'sentence': sentence, | |
'sentiment': sentiment, | |
'x': vector[0], | |
'y':vector[1] | |
} | |
return(pd.DataFrame(tmp,index=[idx])) | |
else: | |
#go through each group and add | |
df = {"source":[], | |
"name":[], | |
"sentence":[], | |
"sentiment":[], | |
"x":[], | |
"y":[], | |
"sort_order":[] | |
} | |
slice_short = sentence | |
slice_sentiment = sentiment | |
vec_embedding = prep_embed_data(sentence,embed_model) | |
df['source'] = df['source'] + [source]*len(slice_short) | |
df['name'] = df['name'] + [name]*len(slice_short) | |
#the sort order effects how its drawn by altair | |
df['sort_order'] = df['sort_order'] + [sort_order]*len(slice_short) | |
#add individual elements | |
for i in range(len(slice_short)): | |
df['sentence'].append(slice_short[i]) | |
df['sentiment'].append(slice_sentiment[i]) | |
df['x'].append(vec_embedding[i][0]) | |
df['y'].append(vec_embedding[i][1]) | |
df = pd.DataFrame(df) | |
return(df) | |