Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,15 +5,10 @@ import cv2
|
|
5 |
import gradio as gr
|
6 |
import yolov9
|
7 |
|
8 |
-
# Load the
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
# Load the second YOLO model (assuming you have a second YOLOv9 model or another YOLO model)
|
14 |
-
model2 = yolov9.load('best (1).pt', device="cpu")
|
15 |
-
model2.conf = 0.40
|
16 |
-
model2.iou = 0.45
|
17 |
|
18 |
def remove_lines(img):
|
19 |
# Convert the image to grayscale
|
@@ -33,91 +28,27 @@ def remove_lines(img):
|
|
33 |
return img
|
34 |
|
35 |
def Predict(img):
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
# Make a copy of the image for cropping
|
41 |
-
img_for_cropping = img.copy()
|
42 |
-
|
43 |
-
# Run inference using the first model
|
44 |
-
results1 = model1(img, size=224)
|
45 |
-
annotator1 = Annotator(img, line_width=2, example=str('Organ'))
|
46 |
-
|
47 |
-
detections1 = {}
|
48 |
-
for result in results1.xyxy[0]:
|
49 |
-
xmin, ymin, xmax, ymax, confidence, class_id = result
|
50 |
-
label = results1.names[int(class_id)]
|
51 |
-
confidence = float(confidence)
|
52 |
-
|
53 |
-
if label not in detections1 or detections1[label]['confidence'] < confidence:
|
54 |
-
detections1[label] = {
|
55 |
-
'box': [xmin, ymin, xmax, ymax],
|
56 |
-
'confidence': confidence
|
57 |
-
}
|
58 |
-
|
59 |
-
# Run inference using the second model
|
60 |
-
results2 = model2(img, size=224)
|
61 |
-
annotator2 = Annotator(img, line_width=2, example=str('Organ'))
|
62 |
|
63 |
-
|
64 |
-
for result in results2.xyxy[0]:
|
65 |
xmin, ymin, xmax, ymax, confidence, class_id = result
|
66 |
-
label =
|
67 |
confidence = float(confidence)
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
'box': [xmin, ymin, xmax, ymax],
|
72 |
-
'confidence': confidence
|
73 |
-
}
|
74 |
-
|
75 |
-
# Combine detections from both models
|
76 |
-
combined_detections = {**detections1, **detections2}
|
77 |
-
|
78 |
-
for label, data in combined_detections.items():
|
79 |
-
xmin, ymin, xmax, ymax = data['box']
|
80 |
-
confidence = data['confidence']
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
# Remove lines from the cropped image
|
86 |
-
cropped_img_cleaned = remove_lines(cropped_img)
|
87 |
-
|
88 |
-
cropped_images.append((label, confidence, cropped_img_cleaned))
|
89 |
-
|
90 |
-
# Convert the cropped image from BGR to RGB before saving
|
91 |
-
cropped_img_rgb = cv2.cvtColor(cropped_img_cleaned, cv2.COLOR_BGR2RGB)
|
92 |
-
|
93 |
-
# Save the cropped image
|
94 |
-
crop_filename = f"{label}.jpg"
|
95 |
-
img_name_list.append(crop_filename)
|
96 |
-
cv2.imwrite(crop_filename, cropped_img_rgb)
|
97 |
-
|
98 |
-
# Annotating the image (after cropping to ensure the line is not in the cropped images)
|
99 |
-
annotator1.box_label([xmin, ymin, xmax, ymax], f"{label} {confidence:.2f}", color=(255, 0, 0))
|
100 |
-
|
101 |
-
annotated_img = annotator1.result()
|
102 |
-
objects_name = [(label, data['confidence']) for label, data in combined_detections.items()]
|
103 |
-
labels = [{"label": label, "confidence": confidence} for label, confidence in objects_name]
|
104 |
-
|
105 |
-
return annotated_img, cropped_images, objects_name
|
106 |
|
107 |
def output_display(img):
|
108 |
-
annotated_img
|
109 |
-
|
110 |
-
# Extract cropped images and labels separately
|
111 |
-
crops = [crop for _, _, crop in cropped_images]
|
112 |
-
labels = [{"label": label, "confidence": confidence} for label, confidence in objects_name]
|
113 |
-
|
114 |
-
return annotated_img, crops, labels
|
115 |
|
116 |
interface = gr.Interface(fn=output_display,
|
117 |
inputs=["image"],
|
118 |
-
outputs=
|
119 |
-
gr.Gallery(label="Cropped Images"),
|
120 |
-
gr.JSON(label="Labels and Confidence")])
|
121 |
|
122 |
interface.launch(debug=True)
|
123 |
-
|
|
|
5 |
import gradio as gr
|
6 |
import yolov9
|
7 |
|
8 |
+
# Load the YOLOv9 model
|
9 |
+
model = yolov9.load('best (1).pt', device="cpu")
|
10 |
+
model.conf = 0.40
|
11 |
+
model.iou = 0.45
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def remove_lines(img):
|
14 |
# Convert the image to grayscale
|
|
|
28 |
return img
|
29 |
|
30 |
def Predict(img):
|
31 |
+
# Run inference using the model
|
32 |
+
results = model(img, size=224)
|
33 |
+
annotator = Annotator(img, line_width=2, example=str('Organ'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
for result in results.xyxy[0]:
|
|
|
36 |
xmin, ymin, xmax, ymax, confidence, class_id = result
|
37 |
+
label = results.names[int(class_id)]
|
38 |
confidence = float(confidence)
|
39 |
|
40 |
+
# Annotate the image
|
41 |
+
annotator.box_label([xmin, ymin, xmax, ymax], f"{label} {confidence:.2f}", color=(255, 0, 0))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
annotated_img = annotator.result()
|
44 |
+
return annotated_img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
def output_display(img):
|
47 |
+
annotated_img = Predict(img)
|
48 |
+
return annotated_img
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
interface = gr.Interface(fn=output_display,
|
51 |
inputs=["image"],
|
52 |
+
outputs=gr.Image(label="Annotated Image"))
|
|
|
|
|
53 |
|
54 |
interface.launch(debug=True)
|
|