|
import gradio as gr |
|
import joblib |
|
import pandas as pd |
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
model_path = hf_hub_download(repo_id="abhishek/autotrain-iris-xgboost", filename="model.joblib") |
|
model = joblib.load(model_path) |
|
|
|
|
|
feature_names = ['feat_SepalLengthCm', 'feat_SepalWidthCm', 'feat_PetalLengthCm', 'feat_PetalWidthCm'] |
|
|
|
def predict(sepal_length, sepal_width, petal_length, petal_width): |
|
data = pd.DataFrame([[sepal_length, sepal_width, petal_length, petal_width]], columns=feature_names) |
|
prediction = model.predict(data)[0] |
|
return f"Predicted Iris Class: {prediction}" |
|
|
|
|
|
iface = gr.Interface( |
|
fn=predict, |
|
inputs=[ |
|
gr.Number(label="Sepal Length (cm)"), |
|
gr.Number(label="Sepal Width (cm)"), |
|
gr.Number(label="Petal Length (cm)"), |
|
gr.Number(label="Petal Width (cm)"), |
|
], |
|
outputs=gr.Textbox(label="Prediction"), |
|
title="Iris Species Predictor 🌸", |
|
description="Enter flower features to predict the Iris species using a model trained with AutoTrain Tabular." |
|
) |
|
|
|
iface.launch() |
|
|