Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
import joblib | |
from huggingface_hub import hf_hub_download | |
# Download model from Hugging Face | |
model_path = hf_hub_download(repo_id="abhishek/autotrain-iris-xgboost", filename="model.joblib") | |
model = joblib.load(model_path) | |
# Prediction function | |
def predict(sepal_length, sepal_width, petal_length, petal_width): | |
input_df = pd.DataFrame([{ | |
"feat_SepalLengthCm": sepal_length, | |
"feat_SepalWidthCm": sepal_width, | |
"feat_PetalLengthCm": petal_length, | |
"feat_PetalWidthCm": petal_width | |
}]) | |
prediction = model.predict(input_df)[0] | |
return prediction | |
# Gradio interface | |
iface = gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.Slider(4.0, 8.0, label="Sepal Length (cm)"), | |
gr.Slider(2.0, 5.0, label="Sepal Width (cm)"), | |
gr.Slider(1.0, 7.0, label="Petal Length (cm)"), | |
gr.Slider(0.1, 3.0, label="Petal Width (cm)") | |
], | |
outputs="text", | |
title="Iris Flower Classifier 🌸" | |
) | |
iface.launch() | |