File size: 1,006 Bytes
04fc35c 1fd4ca3 04fc35c 1fd4ca3 04fc35c 1fd4ca3 04fc35c 1fd4ca3 04fc35c 1fd4ca3 04fc35c 1fd4ca3 04fc35c 1fd4ca3 04fc35c 1fd4ca3 04fc35c 1fd4ca3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import gradio as gr
import pandas as pd
import joblib
from huggingface_hub import hf_hub_download
# Download model from Hugging Face
model_path = hf_hub_download(repo_id="abhishek/autotrain-iris-xgboost", filename="model.joblib")
model = joblib.load(model_path)
# Prediction function
def predict(sepal_length, sepal_width, petal_length, petal_width):
input_df = pd.DataFrame([{
"feat_SepalLengthCm": sepal_length,
"feat_SepalWidthCm": sepal_width,
"feat_PetalLengthCm": petal_length,
"feat_PetalWidthCm": petal_width
}])
prediction = model.predict(input_df)[0]
return prediction
# Gradio interface
iface = gr.Interface(
fn=predict,
inputs=[
gr.Slider(4.0, 8.0, label="Sepal Length (cm)"),
gr.Slider(2.0, 5.0, label="Sepal Width (cm)"),
gr.Slider(1.0, 7.0, label="Petal Length (cm)"),
gr.Slider(0.1, 3.0, label="Petal Width (cm)")
],
outputs="text",
title="Iris Flower Classifier 🌸"
)
iface.launch()
|