File size: 11,778 Bytes
3ef85e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
# Copyright 2022-present NAVER Corp.
# CC BY-NC-SA 4.0
# Available only for non-commercial use
from pdb import set_trace as bb
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from core import functional as myF
from core.pixel_desc import PixelDesc
from tools.common import mkdir_for, todevice, cudnn_benchmark, nparray, image, image_with_trf
from tools.viz import dbgfig, show_correspondences
def arg_parser():
import argparse
parser = argparse.ArgumentParser('SingleScalePUMP on GPU with PyTorch')
parser.add_argument('--img1', required=True, help='path to img1')
parser.add_argument('--img2', required=True, help='path to img2')
parser.add_argument('--resize', type=int, default=512, nargs='+', help='prior downsize of img1 and img2')
parser.add_argument('--output', default=None, help='output path for correspondences')
parser.add_argument('--levels', type=int, default=99, help='number of pyramid levels')
parser.add_argument('--min-shape', type=int, default=5, help='minimum size of corr maps')
parser.add_argument('--nlpow', type=float, default=1.5, help='non-linear activation power in [1,2]')
parser.add_argument('--border', type=float, default=0.9, help='border invariance level in [0,1]')
parser.add_argument('--dtype', default='float16', choices='float16 float32 float64'.split())
parser.add_argument('--desc', default='PUMP-stytrf', help='checkpoint name')
parser.add_argument('--first-level', choices='torch'.split(), default='torch')
parser.add_argument('--activation', choices='torch'.split(), default='torch')
parser.add_argument('--forward', choices='torch cuda cuda-lowmem'.split(), default='cuda-lowmem')
parser.add_argument('--backward', choices='python torch cuda'.split(), default='cuda')
parser.add_argument('--reciprocal', choices='cpu cuda'.split(), default='cpu')
parser.add_argument('--post-filter', default=None, const=True, nargs='?', help='post-filtering (See post_filter.py)')
parser.add_argument('--verbose', type=int, default=0, help='verbosity')
parser.add_argument('--device', default='cuda', help='gpu device')
parser.add_argument('--dbg', nargs='*', default=(), help='debug options')
return parser
class SingleScalePUMP (nn.Module):
def __init__(self, levels = 9, nlpow = 1.4, cutoff = 1,
border_inv=0.9, min_shape=5, renorm=(),
pixel_desc = None, dtype = torch.float32,
verbose = True ):
super().__init__()
self.levels = levels
self.min_shape = min_shape
self.nlpow = nlpow
self.border_inv = border_inv
assert pixel_desc, 'Requires a pixel descriptor'
self.pixel_desc = pixel_desc.configure(self)
self.dtype = dtype
self.verbose = verbose
@torch.no_grad()
def forward(self, img1, img2, ret='corres', dbg=()):
with cudnn_benchmark(False):
# compute descriptors
(img1, img2), pixel_descs, trfs = self.extract_descs(img1, img2, dtype=self.dtype)
# backward and forward passes
pixel_corr = self.first_level(*pixel_descs, dbg=dbg)
pixel_corr = self.backward_pass(self.forward_pass(pixel_corr, dbg=dbg), dbg=dbg)
# recover correspondences
corres = myF.best_correspondences( pixel_corr )
if dbgfig('corres', dbg): viz_correspondences(img1[0], img2[0], *corres, fig='last')
corres = [(myF.affmul(trfs,pos),score) for pos, score in corres] # rectify scaling etc.
if ret == 'raw': return corres, trfs
return self.reciprocal(*corres)
def extract_descs(self, img1, img2, dtype=None):
img1, sca1 = self.demultiplex_img_trf(img1)
img2, sca2 = self.demultiplex_img_trf(img2)
desc1, trf1 = self.pixel_desc(img1)
desc2, trf2 = self.pixel_desc(img2)
return (img1, img2), (desc1.type(dtype), desc2.type(dtype)), (sca1@trf1, sca2@trf2)
def demultiplex_img_trf(self, img, **kw):
return img if isinstance(img, tuple) else (img, torch.eye(3, device=img.device))
def forward_pass(self, pixel_corr, dbg=()):
weights = None
if isinstance(pixel_corr, tuple):
pixel_corr, weights = pixel_corr
# first-level with activation
if self.verbose: print(f' Pyramid level {0} shape={tuple(pixel_corr.shape)}')
pyramid = [ self.activation(0,pixel_corr) ]
if dbgfig(f'corr0', dbg): viz_correlation_maps(*from_stack('img1','img2'), pyramid[0], fig='last')
for level in range(1, self.levels+1):
upper, weights = self.forward_level(level, pyramid[-1], weights)
if weights.sum() == 0: break # img1 has become too small
# activation
pyramid.append( self.activation(level,upper) )
if self.verbose: print(f' Pyramid level {level} shape={tuple(upper.shape)}')
if dbgfig(f'corr{level}', dbg): viz_correlation_maps(*from_stack('img1','img2'), upper, level=level, fig='last')
if min(upper.shape[-2:]) <= self.min_shape: break # img2 has become too small
return pyramid
def forward_level(self, level, corr, weights):
# max-pooling
pooled = F.max_pool2d(corr, 3, padding=1, stride=2)
# sparse conv
return myF.sparse_conv(level, pooled, weights, norm=self.border_inv)
def backward_pass(self, pyramid, dbg=()):
# same than forward in reverse order
for level in range(len(pyramid)-1, 0, -1):
lower = self.backward_level(level, pyramid)
# assert not torch.isnan(lower).any(), bb()
if self.verbose: print(f' Pyramid level {level-1} shape={tuple(lower.shape)}')
del pyramid[-1] # free memory
if dbgfig(f'corr{level}-bw', dbg): viz_correlation_maps(img1, img2, lower, fig='last')
return pyramid[0]
def backward_level(self, level, pyramid):
# reverse sparse-coonv
pooled = myF.sparse_conv(level, pyramid[level], reverse=True)
# reverse max-pool and add to lower level
return myF.max_unpool(pooled, pyramid[level-1])
def activation(self, level, corr):
assert 1 <= self.nlpow <= 3
corr.clamp_(min=0).pow_(self.nlpow)
return corr
def first_level(self, desc1, desc2, dbg=()):
assert desc1.ndim == desc2.ndim == 4
assert len(desc1) == len(desc2) == 1, "not implemented"
H1, W1 = desc1.shape[-2:]
H2, W2 = desc2.shape[-2:]
patches = F.unfold(desc1, 4, stride=4) # C*4*4, H1*W1//16
B, C, N = patches.shape
# rearrange(patches, 'B (C Kh Kw) H1W1 -> B H1W1 C Kh Kw', Kh=4, Kw=4)
patches = patches.permute(0, 2, 1).view(B, H1W1, C//16, 4, 4)
corr, norms = myF.normalized_corr(patches[0], desc2[0], ret_norms=True)
if dbgfig('ncc',dbg):
for j in range(0,len(corr),9):
for i in range(9):
pl.subplot(3,3,i+1).cla()
i += j
pl.imshow(corr[i], vmin=0.9, vmax=1)
pl.plot(2+(i%16)*4, 2+(i//16)*4,'xr', ms=10)
bb()
return corr.view(H1//4, W1//4, H2+1, W2+1), (norms.view(H1//4, W1//4)>0).float()
def reciprocal(self, corres1, corres2 ):
corres1, corres2 = todevice(corres1, 'cpu'), todevice(corres2, 'cpu')
return myF.reciprocal(self, corres1, corres2)
class Main:
def __init__(self):
self.post_filtering = False
def run_from_args(self, args):
device = args.device
self.matcher = self.build_matcher(args, device)
if args.post_filter:
self.post_filtering = {} if args.post_filter is True else eval(f'dict({args.post_filter})')
corres = self(*self.load_images(args, device), dbg=set(args.dbg))
if args.output:
self.save_output( args.output, corres )
def run_from_args_with_images(self, img1, img2, args):
device = args.device
self.matcher = self.build_matcher(args, device)
if args.post_filter:
self.post_filtering = {} if args.post_filter is True else eval(f'dict({args.post_filter})')
if isinstance(args.resize, int): # user can provide 2 separate sizes for each image
args.resize = (args.resize, args.resize)
if len(args.resize) == 1:
args.resize = 2 * args.resize
images = []
for imgx, size in zip([img1, img2], args.resize):
img = torch.from_numpy(np.array(imgx.convert('RGB'))).permute(2,0,1).to(device)
img = myF.imresize(img, size)
images.append( img )
corres = self(*images, dbg=set(args.dbg))
if args.output:
self.save_output( args.output, corres )
return corres
@staticmethod
def get_options( args ):
# configure the pipeline
pixel_desc = PixelDesc(path=f'checkpoints/{args.desc}.pt')
return dict(levels=args.levels, min_shape=args.min_shape, border_inv=args.border, nlpow=args.nlpow,
pixel_desc=pixel_desc, dtype=eval(f'torch.{args.dtype}'), verbose=args.verbose)
@staticmethod
def tune_matcher( args, matcher, device ):
if device == 'cpu':
matcher.dtype = torch.float32
args.forward = 'torch'
args.backward = 'torch'
args.reciprocal = 'cpu'
if args.forward == 'cuda': type(matcher).forward_level = myF.forward_cuda
if args.forward == 'cuda-lowmem':type(matcher).forward_level = myF.forward_cuda_lowmem
if args.backward == 'python': type(matcher).backward_pass = legacy.backward_python
if args.backward == 'cuda': type(matcher).backward_level = myF.backward_cuda
if args.reciprocal == 'cuda': type(matcher).reciprocal = myF.reciprocal
return matcher.to(device)
@staticmethod
def build_matcher(args, device):
options = Main.get_options(args)
matcher = SingleScalePUMP(**options)
return Main.tune_matcher(args, matcher, device)
def __call__(self, *imgs, dbg=()):
corres = self.matcher( *imgs, dbg=dbg).cpu().numpy()
if self.post_filtering is not False:
corres = self.post_filter( imgs, corres )
if 'print' in dbg: print(corres)
if dbgfig('viz',dbg): show_correspondences(*imgs, corres)
return corres
@staticmethod
def load_images( args, device='cpu' ):
def read_image(impath):
try:
from torchvision.io.image import read_image, ImageReadMode
return read_image(impath, mode=ImageReadMode.RGB)
except RuntimeError:
from PIL import Image
return torch.from_numpy(np.array(Image.open(impath).convert('RGB'))).permute(2,0,1)
if isinstance(args.resize, int): # user can provide 2 separate sizes for each image
args.resize = (args.resize, args.resize)
if len(args.resize) == 1:
args.resize = 2 * args.resize
images = []
for impath, size in zip([args.img1, args.img2], args.resize):
img = read_image(impath).to(device)
img = myF.imresize(img, size)
images.append( img )
return images
def post_filter(self, imgs, corres ):
from post_filter import filter_corres
return filter_corres(*map(image_with_trf,imgs), corres, **self.post_filtering)
def save_output(self, output_path, corres ):
mkdir_for( output_path )
np.savez(open(output_path,'wb'), corres=corres)
if __name__ == '__main__':
Main().run_from_args(arg_parser().parse_args())
|