File size: 18,000 Bytes
3ef85e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
# Copyright 2022-present NAVER Corp.
# CC BY-NC-SA 4.0
# Available only for non-commercial use

from pdb import set_trace as bb
import numpy as np
import torch
import torch.nn.functional as F


def affmul( aff, vecs ):
    """ affine multiplication: 
        computes aff @ vecs.T """
    if aff is None: return vecs        
    if isinstance(aff, (tuple,list)) or aff.ndim==3:
        assert len(aff) == 2
        assert 4 <= vecs.shape[-1], bb()
        vecs = vecs.clone() if isinstance(vecs, torch.Tensor) else vecs.copy()
        vecs[...,0:2] = affmul(aff[0], vecs[...,0:2])
        vecs[...,2:4] = affmul(aff[1], vecs[...,2:4])
        return vecs
    else:
        assert vecs.shape[-1] == 2, bb()
        assert aff.shape == (2,3) or (aff.shape==(3,3) and
               aff[2,0] == aff[2,1] == 0 and aff[2,2] == 1), bb()
        return (vecs @ aff[:2,:2].T) + aff[:2,2]


def imresize( img, max_size, mode='area' ):
    # trf: cur_pix --> old_pix
    img, trf = img if isinstance(img,tuple) else (img, torch.eye(3,device=img.device))
    
    shape = img.shape[-2:]
    if max_size > 0 and max(shape) > max_size:
        new_shape = tuple(i * max_size // max(shape) for i in shape)
        img = F.interpolate( img[None].float(), size=new_shape, mode=mode )[0]
        img.clamp_(min=0, max=255)
        sca = torch.diag(torch.tensor((shape[0]/new_shape[0],shape[1]/new_shape[1],1), device=img.device))
        img = img.byte()
        trf = trf @ sca # undo sca first

    return img, trf


def rotate_img( img, angle, crop=False ):
    if angle in (0, 90, 180, 270):
        return rotate_img_90(img,angle)

    img, trf = img
    assert trf.shape == (3,3)

    def centered_rotation(rotation, shape, **device):
        # rotation matrix
        # pt_in_original_image = rot * pt_in_rotated_image
        angle = rotation * np.pi / 180
        c, s = np.cos(angle), np.sin(angle)
        rot = torch.tensor([(c, -s, 0), (s, c, 0), (0, 0, 1)], dtype=torch.float32, **device)

        # determine center of rotation before
        H, W = shape
        c_before = torch.tensor((W,H), **device) / 2
        if crop:
            c_after = c_before
            rot_size = (W,H)
        else:
            # enlarge image to fit everything
            corners = torch.tensor([(0, W, W, 0), (0, 0, H, H)], dtype=torch.float32, **device)
            corners = affmul(rot, corners.T).T
            rot_size = (corners.max(dim=1).values - corners.min(dim=1).values + 0.5).int()
            rot_size = (rot_size // 4) * 4 # legacy
            c_after = rot_size / 2

        rot[:2,2] = c_before - affmul(rot, c_after) # fix translation
        return rot, tuple(rot_size)[::-1]

    C, H, W = img.shape
    rot, (OH, OW) = centered_rotation(angle, (H,W), device=img.device)

    # pt_in_original_image = rot * pt_in_rotated_image
    # but pytorch works in [-1,1] coordinates... annoying
    # pt_in_original_1_1 = orig_px_to_1_1 * rot * rotated_1_1_to_px * pt_in_rotated_1_1
    _1_1_to_px = lambda W,H: torch.tensor(((W/2, 0, W/2), (0, H/2, H/2), (0, 0, 1)), device=img.device)
    theta = torch.inverse(_1_1_to_px(W-1,H-1)) @ rot @ _1_1_to_px(OW-1,OH-1)

    grid = F.affine_grid(theta[None,:2], (1, C, OH, OW), align_corners=True)
    res = F.grid_sample(img[None].float(), grid, align_corners=True).to(dtype=img.dtype)[0]
    return res, trf @ rot



def rotate_img_90( img, angle ):
    """ Rotate an image by a multiple of 90 degrees using simple transpose and flip ops.
    img = tuple( image, existing_trf )
        existing_trf: current --> old
    """
    angle = angle % 360
    assert angle in (0, 90, 180, 270), 'cannot handle rotation other than multiple of 90 degrees'
    img, trf = img
    assert trf.shape == (3,3)
    
    if isinstance(img, np.ndarray):
        assert img.ndim == 3 and 1 <= img.shape[2] <= 3
        new, x, y = np.float32, 1, 0
        flip = lambda i,d: np.flip(i,axis=d)
    elif isinstance(img, torch.Tensor):
        assert img.ndim == 3 and 1 <= img.shape[0] <= 3
        new, x, y = trf.new, -1, -2
        flip = lambda i,d: i.flip(dims=[d])
    H, W = img.shape[y], img.shape[x]

    if angle == 90:
        # point 0,0 --> (0, H-1); W-1,0 --> 0,0
        img = flip(img.swapaxes(x,y),y)
        trf = trf @ new([[0,-1,W-1],[1,0,0],[0,0,1]]) # inverse transform: new --> current
    if angle == 180:
        # point 0,0 --> (W-1, H-1)
        img = flip(flip(img,x),y)
        trf = trf @ new([[-1,0,W-1],[0,-1,H-1],[0,0,1]]) # inverse transform: new --> current
    if angle == 270:
        # point 0,0 --> (H-1, 0); 0,H-1 --> 0,0
        img = flip(img.swapaxes(x,y),x)
        trf = trf @ new([[0,1,0],[-1,0,H-1],[0,0,1]]) # inverse transform: new --> current
    return img, trf


def encode_scale_rot(scale, rot):
    s = np.int32(np.rint(np.log(scale) / (0.5*np.log(2))))
    r = np.int32(np.rint(((-rot) % 360) / 45)) % 8
    return 8*s + (r%8)

def decode_scale_rot( code ):
    s = code // 8
    r = (code % 8)
    return 2 ** (s/2), -((45 * r + 180) % 360 - 180)


def normalized_corr(patches, img, padding='ncc', extra_patch=False, ret_norms=False):
    assert patches.ndim == 4, 'patches shape must be (H*W, C, K, K)'
    P, C, K, K = patches.shape
    assert img.ndim == 3 and img.shape[0] == C, 'img shape must be (C, W, H)'
    eps = torch.finfo(patches.dtype).tiny

    # normalize on patches side
    norms = patches.view(P,-1).norm(dim=-1)
    patches = patches / norms[:,None,None,None].clamp(min=eps)

    # convolve normalized patches on unnormalized image    
    ninth = 0
    if padding == 'ninth': 
        ninth = img[:,-1].mean() # ninth dimension    
    img = F.pad(img[None], (K//2,K//2)*2, mode='constant', value=ninth)[0]

    corr = F.conv2d(img[None], patches, padding=0, bias=None)[0]

    # normalize on img's side
    ones = patches.new_ones((1, C, K, K))
    local_norm = torch.sqrt(F.conv2d(img[None]**2, ones))[0]
    corr /= local_norm

    # normalize on patches' side (image borders)
    if padding == 'ncc':
        local_norm = torch.sqrt(F.conv2d(ones, patches**2, padding=2))[0]
        local_norm.clamp_(min=eps)
        for j in range(-2, 3):
          for i in range(-2,3):
            if i == j == 2: continue # normal case is already normalized
            if i == 2: i = slice(2,-2)
            if j == 2: j = slice(2,-2)
            corr[:,j,i] /= local_norm[:,j,i]

    return (corr, norms) if ret_norms else corr


def true_corr_shape( corr_shape, level ):
    H1, W1, H2, W2 = corr_shape[-4:]
    if level > 0: # recover true size
        H1, W1 = H1-1, W1-1
    return corr_shape[:-4] + (H1, W1, H2, W2)

def children(level, H1, W1, H2, W2):
    """ level: parent level (> 1) """
    gap = 2**(level-2)
    # @ level 1: gap=0.5   (parent at x=1 has children at x=[0.5, 1.5])
    # @ level 2: gap=1     (parent at x=1 has children at x=[0, 2])
    # @ level 3: gap=2     (parent at x=2 has children at x=[0, 4])
    #   etc.

    def ravel_child(x, y):
        # x,y is he center of the child patch
        inside = (0 <= x <= W1) and (0 <= y <= H1)
        if gap < 1:
            assert x % 1 == y % 1 == 0.5, bb()
            return int((x-0.5) + (y-0.5) * W1) if inside else -1
        else:
            assert x % 1 == y % 1 == 0, bb()
            return int(x + y * (W1+1)) if inside else -1
    
    # 4 children for each parent patch (top-left, top-right, bot-left, bot-right, -1 = None)
    parents = []
    for h in range(H1+1):
      for w in range(W1+1):
        # enumerate the 4 children for this patch
        children = [ravel_child(w + gap*tx, h + gap*ty) for ty in (-1,1) for tx in (-1,1)]
        parents.append(children)

    return torch.tensor(parents, dtype=torch.int64)


def sparse_conv(level, corr, weights=None, reverse=False, norm=0.9):
    H1, W1, H2, W2 = true_corr_shape(corr.shape, level-1 + reverse)
    parents = children(level, H1, W1, H2, W2).to(corr.device)
    n_parents = len(parents)

    # perform the sparse convolution 'manually'
    # since sparse convolutions are not implemented in pytorch currently
    corr = corr.view(-1, *corr.shape[-2:])
    if not reverse:
        res = corr.new_zeros((n_parents+1,)+corr.shape[-2:]) # last one = garbage channel
        nrm = corr.new_full((n_parents+1,3,3), 1e-8)
        ones = nrm.new_ones((len(corr),1,1))
        ex = 1
        if weights is not None: 
            weights = weights.view(len(corr),1,1)
            corr *= weights # apply weights to correlation maps without increasing memory footprint
            ones *= weights
    else:
        assert corr._base is not None and corr._base.shape[0] == n_parents+1
        corr._base[-1] = 0 # reset garbage layer
        ex = 1 if level > 1 else 0
        n_children = (H1+ex) * (W1+ex)
        res = corr.new_zeros((n_children,)+corr.shape[-2:]) 

    sl = lambda v: slice(0,-1 or None) if v < 0 else slice(1,None)
    c = 0
    for y in (-1, 1):
        for x in (-1, 1):
            src_layers = parents[:,c]; c+= 1
            # we want to do: res += corr[src_layers]  (for all children != -1)
            # but we only have 'res.index_add_()' <==> res[tgt_layers] += corr
            tgt_layers = inverse_mapping(src_layers, max_elem=len(corr), default=n_parents)[:-1]

            if not reverse:
                # All of corr's channels MUST be utilized. for level>1, this doesn't hold,
                # so we'll send them to a garbage channel ==> res[n_parents]
                sel = good_slice( tgt_layers < n_parents )

                res[:,sl(-y),sl(-x)].index_add_(0, tgt_layers[sel], corr[sel,sl(y),sl(x)])
                nrm[:,sl(-y),sl(-x)].index_add_(0, tgt_layers[sel], ones[sel].expand(-1,2,2))
            else:
                ''' parent=199=11*17+12 @ (x=48, y=44) at level=1
                    |-- child=171 @ (x=46,y=42) at level0
                    |-- child=172 @ (x=50,y=42) at level0
                    |-- child=187 @ (x=46,y=46) at level0
                    |-- child=188 @ (x=50,y=46) at level0
                '''
                out = res[:,sl(y),sl(x)]
                sel = tgt_layers[:n_children]
                torch.maximum(out, corr._base[sel,sl(-y),sl(-x)], out=out)

    if not reverse: 
        if weights is not None: corr /= weights.clamp(min=1e-12) # cancel weights
        weights = norm_borders(res, nrm, norm=norm)[:-1]
        res = res[:-1] # remove garbage channel
    res = res.view(H1+ex, W1+ex, *res.shape[-2:])
    return res if reverse else (res, weights)
    
def norm_borders( res, nrm, norm=0.9 ):
    """ apply some border normalization, modulated by `norm`
        - if norm=0: no normalization at all
        - if norm=1: full normalization
    Formula: nrm = k * (nrm/k)**p = k**(1-p) * nrm**p, 
        with k=nrm[:,1,1] and p=norm
    """
    new_weights = nrm[...,1,1].clone()
    nrm = (nrm[...,1:2,1:2] ** (1-norm)) * (nrm ** norm)
    # assert not torch.isnan(nrm).any()
    
    # normalize results on the borders 
    res[...,0   ,0   ] /= nrm[...,0  ,0  ]
    res[...,0   ,1:-1] /= nrm[...,0  ,1:2]
    res[...,0   ,  -1] /= nrm[...,0  ,2  ]
    res[...,1:-1,0   ] /= nrm[...,1:2,0  ]
    res[...,1:-1,1:-1] /= nrm[...,1:2,1:2]
    res[...,1:-1,  -1] /= nrm[...,1:2,2  ]
    res[...,  -1,0   ] /= nrm[...,2  ,0  ]
    res[...,  -1,1:-1] /= nrm[...,2  ,1:2]
    res[...,  -1,  -1] /= nrm[...,2  ,2  ]
    return new_weights


def inverse_mapping( map, max_elem=None, default=None):
    """ given a mapping {i:j} we output {j:i}
        (the mapping is a torch array)
    """
    assert isinstance(map, torch.Tensor) and map.ndim == 1
    if max_elem is None: max_elem = map.max()
    if default is None:
        index = torch.empty(max_elem+1, dtype=torch.int64, device=map.device) # same size as corr, last elem == garbage
    else:
        index = torch.full((max_elem+1,), default, dtype=torch.int64, device=map.device) # same size as corr, last elem == garbage
    index[map] = torch.arange(len(map), device=map.device)
    return index


def good_slice( nonzero ):
    good = nonzero.nonzero().ravel()
    return slice(good.min().item(), good.max().item()+1)


def max_unpool(upper, lower, exclude_border=True):
    # re-compute max-pool indices
    if exclude_border:
        # apparently, we cannot unpool on the bottom and right borders in legacy code (local_argmax with ex=1)
        _, pos = F.max_pool2d(lower[:,:,:-1,:-1], 3, padding=1, stride=2, return_indices=True, ceil_mode=True)
        W1 = lower.shape[-1]
        pos = (pos//(W1-1))*W1 + (pos%(W1-1)) # fix the shortening
    else:
        _, pos = F.max_pool2d(lower, 3, padding=1, stride=2, return_indices=True)

    # because there are potential collisions between overlapping 3x3 cells,
    # that pytorch does not handle, we unpool in 4 successive non-overlapping steps.
    for i in range(2):
      for j in range(2):
        # stride=0 instead of 1 because pytorch does some size checking, this is a hack
        tmp = F.max_unpool2d(upper[:,:,i::2,j::2], pos[:,:,i::2,j::2], kernel_size=3, padding=0, stride=4, output_size=lower.shape[-2:])
        if i == j == 0:
            res = tmp
        else:
            torch.maximum(res, tmp, out=res)

    # add scores to existing lower correlation map
    lower += res
    return lower


def mgrid( shape, **kw ):
    """ Returns in (x, y) order (contrary to numpy which is (y,x)  """
    if isinstance(shape, torch.Tensor): shape = shape.shape
    res = torch.meshgrid(*[torch.arange(n, dtype=torch.float32, **kw) for n in shape], indexing='ij')
    return torch.stack(res[::-1], dim=-1).view(-1,2)


def check_corres( corres, step, rot=None ):
    H, W, two = corres.shape
    assert two == 2
    if isinstance(corres, np.ndarray): 
        corres = torch.from_numpy(corres)
    if rot is not None:
        corres = affmul(rot, corres)
    gt = mgrid(corres.shape[:2]).view(H,W,2)
    assert ((gt - corres // step).abs() <= 2).float().mean() > 0.99, bb()


def best_correspondences(corr):
    """ All positions are returned as x1, y1, x2, y2
    """
    if isinstance(corr, tuple): return corr # for legacy
    H1, W1, H2, W2 = corr.shape
    fix1 = lambda arr: 4*arr+2 # center of cells in img1
    div = lambda a,b: torch.div(a, b, rounding_mode='trunc') # because of warning in pytorch 1.9+

    # best scores in img1
    score1, pos1 = corr.view(H1, W1, H2*W2).max(dim=-1)
    pos1 = torch.cat((fix1(mgrid(score1, device=pos1.device)), pos1.view(-1,1)%W2, div(pos1.view(-1,1),W2)), dim=-1)

    # best scores in img2
    score2, pos2 = max_pool3d( corr, kernel_size=4, stride=4 )
    pos2, score2 = pos2.view(-1,1), score2.squeeze()
    pos2 = torch.cat((fix1(div(pos2,W2*H2)%W1), fix1(div(pos2,(W1*H2*W2))), pos2%W2, div(pos2,W2)%H2), dim=-1).float()

    return (pos1, score1), (pos2, score2)


def intersection( set1_, set2_ ):
    """ Returns the indices of values in set1 that are duplicated in set2
    """
    set1, map1 = set1_.squeeze().unique(return_inverse=True) # map1: i1 -> j1
    set2 = set2_.squeeze().unique()
    combined = torch.cat((set1, set2))

    uniques, inverse, counts = combined.unique(return_counts=True, return_inverse=True)
    # j -> u, i -> j, j -> n
    # we are interested only in (j -> i) for n > 1: 
    # assert counts.max() <= 2, 'there were non-unique values in either set1 or set2'+bb()
    # intersected_values = uniques[counts > 1]
    inverse1 = inverse_mapping(inverse[:len(set1)], max_elem=len(uniques)-1)
    intersected_indices1 = inverse1[counts>1]
    return inverse_mapping(map1, max_elem=len(set1)-1)[intersected_indices1]


def reciprocal(self, corres1, corres2 ):
    pos1, score1 = corres1 
    pos2, score2 = corres2
    (H1, W1), (H2, W2) = score1.shape, map(lambda i: 4*i+1, score2.shape)

    to_int = pos1.new_tensor((W1*H2*W2, H2*W2, W2, 1), dtype=torch.float32)
    inter1 = intersection(pos1@to_int, pos2@to_int)
    res = torch.cat((pos1[inter1], score1.view(-1,1)[inter1], 0*score1.view(-1,1)[inter1]), dim=-1)
    return res


def max_pool3d( corr, kernel_size=4, stride=4 ):
    H1, W1, H2, W2 = corr.shape
    ks, st = kernel_size, stride
    if corr.numel() >= 2**31 and corr.device != torch.device('cpu'):
        # re-implementation due to a bug in pytorch
        import core.cuda_deepm as kernels
        return kernels.max_pool3d( corr.view(1, H1*W1, H2, W2), kernel_size, stride)
    else:
        return F.max_pool3d( corr.view(1, 1, H1*W1, H2, W2), kernel_size=(H1*W1,ks,ks), stride=(1,st,st), return_indices=True)


def forward_cuda(self, level, lower, weights=None, pooled=False):
    import core.cuda_deepm as kernels # must be imported after torch_set_gpu()
    assert lower.numel() < 2**31, 'please use cuda-lowmem, pytorch cannot handle big tensors'
    pooled = lower if pooled else F.max_pool2d(lower, 3, padding=1, stride=2)
    return kernels.forward_agg(level, self.border_inv, pooled, weights)

def forward_cuda_lowmem(self, level, lower, weights=None):
    import core.cuda_deepm as kernels # must be imported after torch_set_gpu()
    return kernels.forward_pool_agg(level, self.border_inv, lower, weights)

def backward_cuda(self, level, pyramid):
    import core.cuda_deepm as kernels # must be imported after torch_set_gpu()
    kernels.backward_agg_unpool(level, pyramid[level], pyramid[level-1], True)
    # assert not torch.isnan(pyramid[level-1]).any(), bb()
    return pyramid[level-1]

def merge_corres(self, corres, rots, all_corres, code):
    " rot : reference --> rotated "
    all_step = self.matcher.pixel_desc.get_atomic_patch_size() // 2 # step size in all_corres
    dev = all_corres[0][1].device

    # stack correspondences
    corres = [torch.cat((p.view(*s.shape,4),s[:,:,None],torch.full_like(s[:,:,None],code)),dim=2) for (p,s) in corres]

    import core.cuda_deepm as kernels # must be imported after torch_set_gpu()
    kernels.merge_corres_one_side( corres[0].to(dev), 0, rots[0].to(dev), all_corres[0][1], all_step )
    kernels.merge_corres_one_side( corres[1].to(dev), 2, rots[1].to(dev), all_corres[1][1], all_step )