File size: 18,000 Bytes
3ef85e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
# Copyright 2022-present NAVER Corp.
# CC BY-NC-SA 4.0
# Available only for non-commercial use
from pdb import set_trace as bb
import numpy as np
import torch
import torch.nn.functional as F
def affmul( aff, vecs ):
""" affine multiplication:
computes aff @ vecs.T """
if aff is None: return vecs
if isinstance(aff, (tuple,list)) or aff.ndim==3:
assert len(aff) == 2
assert 4 <= vecs.shape[-1], bb()
vecs = vecs.clone() if isinstance(vecs, torch.Tensor) else vecs.copy()
vecs[...,0:2] = affmul(aff[0], vecs[...,0:2])
vecs[...,2:4] = affmul(aff[1], vecs[...,2:4])
return vecs
else:
assert vecs.shape[-1] == 2, bb()
assert aff.shape == (2,3) or (aff.shape==(3,3) and
aff[2,0] == aff[2,1] == 0 and aff[2,2] == 1), bb()
return (vecs @ aff[:2,:2].T) + aff[:2,2]
def imresize( img, max_size, mode='area' ):
# trf: cur_pix --> old_pix
img, trf = img if isinstance(img,tuple) else (img, torch.eye(3,device=img.device))
shape = img.shape[-2:]
if max_size > 0 and max(shape) > max_size:
new_shape = tuple(i * max_size // max(shape) for i in shape)
img = F.interpolate( img[None].float(), size=new_shape, mode=mode )[0]
img.clamp_(min=0, max=255)
sca = torch.diag(torch.tensor((shape[0]/new_shape[0],shape[1]/new_shape[1],1), device=img.device))
img = img.byte()
trf = trf @ sca # undo sca first
return img, trf
def rotate_img( img, angle, crop=False ):
if angle in (0, 90, 180, 270):
return rotate_img_90(img,angle)
img, trf = img
assert trf.shape == (3,3)
def centered_rotation(rotation, shape, **device):
# rotation matrix
# pt_in_original_image = rot * pt_in_rotated_image
angle = rotation * np.pi / 180
c, s = np.cos(angle), np.sin(angle)
rot = torch.tensor([(c, -s, 0), (s, c, 0), (0, 0, 1)], dtype=torch.float32, **device)
# determine center of rotation before
H, W = shape
c_before = torch.tensor((W,H), **device) / 2
if crop:
c_after = c_before
rot_size = (W,H)
else:
# enlarge image to fit everything
corners = torch.tensor([(0, W, W, 0), (0, 0, H, H)], dtype=torch.float32, **device)
corners = affmul(rot, corners.T).T
rot_size = (corners.max(dim=1).values - corners.min(dim=1).values + 0.5).int()
rot_size = (rot_size // 4) * 4 # legacy
c_after = rot_size / 2
rot[:2,2] = c_before - affmul(rot, c_after) # fix translation
return rot, tuple(rot_size)[::-1]
C, H, W = img.shape
rot, (OH, OW) = centered_rotation(angle, (H,W), device=img.device)
# pt_in_original_image = rot * pt_in_rotated_image
# but pytorch works in [-1,1] coordinates... annoying
# pt_in_original_1_1 = orig_px_to_1_1 * rot * rotated_1_1_to_px * pt_in_rotated_1_1
_1_1_to_px = lambda W,H: torch.tensor(((W/2, 0, W/2), (0, H/2, H/2), (0, 0, 1)), device=img.device)
theta = torch.inverse(_1_1_to_px(W-1,H-1)) @ rot @ _1_1_to_px(OW-1,OH-1)
grid = F.affine_grid(theta[None,:2], (1, C, OH, OW), align_corners=True)
res = F.grid_sample(img[None].float(), grid, align_corners=True).to(dtype=img.dtype)[0]
return res, trf @ rot
def rotate_img_90( img, angle ):
""" Rotate an image by a multiple of 90 degrees using simple transpose and flip ops.
img = tuple( image, existing_trf )
existing_trf: current --> old
"""
angle = angle % 360
assert angle in (0, 90, 180, 270), 'cannot handle rotation other than multiple of 90 degrees'
img, trf = img
assert trf.shape == (3,3)
if isinstance(img, np.ndarray):
assert img.ndim == 3 and 1 <= img.shape[2] <= 3
new, x, y = np.float32, 1, 0
flip = lambda i,d: np.flip(i,axis=d)
elif isinstance(img, torch.Tensor):
assert img.ndim == 3 and 1 <= img.shape[0] <= 3
new, x, y = trf.new, -1, -2
flip = lambda i,d: i.flip(dims=[d])
H, W = img.shape[y], img.shape[x]
if angle == 90:
# point 0,0 --> (0, H-1); W-1,0 --> 0,0
img = flip(img.swapaxes(x,y),y)
trf = trf @ new([[0,-1,W-1],[1,0,0],[0,0,1]]) # inverse transform: new --> current
if angle == 180:
# point 0,0 --> (W-1, H-1)
img = flip(flip(img,x),y)
trf = trf @ new([[-1,0,W-1],[0,-1,H-1],[0,0,1]]) # inverse transform: new --> current
if angle == 270:
# point 0,0 --> (H-1, 0); 0,H-1 --> 0,0
img = flip(img.swapaxes(x,y),x)
trf = trf @ new([[0,1,0],[-1,0,H-1],[0,0,1]]) # inverse transform: new --> current
return img, trf
def encode_scale_rot(scale, rot):
s = np.int32(np.rint(np.log(scale) / (0.5*np.log(2))))
r = np.int32(np.rint(((-rot) % 360) / 45)) % 8
return 8*s + (r%8)
def decode_scale_rot( code ):
s = code // 8
r = (code % 8)
return 2 ** (s/2), -((45 * r + 180) % 360 - 180)
def normalized_corr(patches, img, padding='ncc', extra_patch=False, ret_norms=False):
assert patches.ndim == 4, 'patches shape must be (H*W, C, K, K)'
P, C, K, K = patches.shape
assert img.ndim == 3 and img.shape[0] == C, 'img shape must be (C, W, H)'
eps = torch.finfo(patches.dtype).tiny
# normalize on patches side
norms = patches.view(P,-1).norm(dim=-1)
patches = patches / norms[:,None,None,None].clamp(min=eps)
# convolve normalized patches on unnormalized image
ninth = 0
if padding == 'ninth':
ninth = img[:,-1].mean() # ninth dimension
img = F.pad(img[None], (K//2,K//2)*2, mode='constant', value=ninth)[0]
corr = F.conv2d(img[None], patches, padding=0, bias=None)[0]
# normalize on img's side
ones = patches.new_ones((1, C, K, K))
local_norm = torch.sqrt(F.conv2d(img[None]**2, ones))[0]
corr /= local_norm
# normalize on patches' side (image borders)
if padding == 'ncc':
local_norm = torch.sqrt(F.conv2d(ones, patches**2, padding=2))[0]
local_norm.clamp_(min=eps)
for j in range(-2, 3):
for i in range(-2,3):
if i == j == 2: continue # normal case is already normalized
if i == 2: i = slice(2,-2)
if j == 2: j = slice(2,-2)
corr[:,j,i] /= local_norm[:,j,i]
return (corr, norms) if ret_norms else corr
def true_corr_shape( corr_shape, level ):
H1, W1, H2, W2 = corr_shape[-4:]
if level > 0: # recover true size
H1, W1 = H1-1, W1-1
return corr_shape[:-4] + (H1, W1, H2, W2)
def children(level, H1, W1, H2, W2):
""" level: parent level (> 1) """
gap = 2**(level-2)
# @ level 1: gap=0.5 (parent at x=1 has children at x=[0.5, 1.5])
# @ level 2: gap=1 (parent at x=1 has children at x=[0, 2])
# @ level 3: gap=2 (parent at x=2 has children at x=[0, 4])
# etc.
def ravel_child(x, y):
# x,y is he center of the child patch
inside = (0 <= x <= W1) and (0 <= y <= H1)
if gap < 1:
assert x % 1 == y % 1 == 0.5, bb()
return int((x-0.5) + (y-0.5) * W1) if inside else -1
else:
assert x % 1 == y % 1 == 0, bb()
return int(x + y * (W1+1)) if inside else -1
# 4 children for each parent patch (top-left, top-right, bot-left, bot-right, -1 = None)
parents = []
for h in range(H1+1):
for w in range(W1+1):
# enumerate the 4 children for this patch
children = [ravel_child(w + gap*tx, h + gap*ty) for ty in (-1,1) for tx in (-1,1)]
parents.append(children)
return torch.tensor(parents, dtype=torch.int64)
def sparse_conv(level, corr, weights=None, reverse=False, norm=0.9):
H1, W1, H2, W2 = true_corr_shape(corr.shape, level-1 + reverse)
parents = children(level, H1, W1, H2, W2).to(corr.device)
n_parents = len(parents)
# perform the sparse convolution 'manually'
# since sparse convolutions are not implemented in pytorch currently
corr = corr.view(-1, *corr.shape[-2:])
if not reverse:
res = corr.new_zeros((n_parents+1,)+corr.shape[-2:]) # last one = garbage channel
nrm = corr.new_full((n_parents+1,3,3), 1e-8)
ones = nrm.new_ones((len(corr),1,1))
ex = 1
if weights is not None:
weights = weights.view(len(corr),1,1)
corr *= weights # apply weights to correlation maps without increasing memory footprint
ones *= weights
else:
assert corr._base is not None and corr._base.shape[0] == n_parents+1
corr._base[-1] = 0 # reset garbage layer
ex = 1 if level > 1 else 0
n_children = (H1+ex) * (W1+ex)
res = corr.new_zeros((n_children,)+corr.shape[-2:])
sl = lambda v: slice(0,-1 or None) if v < 0 else slice(1,None)
c = 0
for y in (-1, 1):
for x in (-1, 1):
src_layers = parents[:,c]; c+= 1
# we want to do: res += corr[src_layers] (for all children != -1)
# but we only have 'res.index_add_()' <==> res[tgt_layers] += corr
tgt_layers = inverse_mapping(src_layers, max_elem=len(corr), default=n_parents)[:-1]
if not reverse:
# All of corr's channels MUST be utilized. for level>1, this doesn't hold,
# so we'll send them to a garbage channel ==> res[n_parents]
sel = good_slice( tgt_layers < n_parents )
res[:,sl(-y),sl(-x)].index_add_(0, tgt_layers[sel], corr[sel,sl(y),sl(x)])
nrm[:,sl(-y),sl(-x)].index_add_(0, tgt_layers[sel], ones[sel].expand(-1,2,2))
else:
''' parent=199=11*17+12 @ (x=48, y=44) at level=1
|-- child=171 @ (x=46,y=42) at level0
|-- child=172 @ (x=50,y=42) at level0
|-- child=187 @ (x=46,y=46) at level0
|-- child=188 @ (x=50,y=46) at level0
'''
out = res[:,sl(y),sl(x)]
sel = tgt_layers[:n_children]
torch.maximum(out, corr._base[sel,sl(-y),sl(-x)], out=out)
if not reverse:
if weights is not None: corr /= weights.clamp(min=1e-12) # cancel weights
weights = norm_borders(res, nrm, norm=norm)[:-1]
res = res[:-1] # remove garbage channel
res = res.view(H1+ex, W1+ex, *res.shape[-2:])
return res if reverse else (res, weights)
def norm_borders( res, nrm, norm=0.9 ):
""" apply some border normalization, modulated by `norm`
- if norm=0: no normalization at all
- if norm=1: full normalization
Formula: nrm = k * (nrm/k)**p = k**(1-p) * nrm**p,
with k=nrm[:,1,1] and p=norm
"""
new_weights = nrm[...,1,1].clone()
nrm = (nrm[...,1:2,1:2] ** (1-norm)) * (nrm ** norm)
# assert not torch.isnan(nrm).any()
# normalize results on the borders
res[...,0 ,0 ] /= nrm[...,0 ,0 ]
res[...,0 ,1:-1] /= nrm[...,0 ,1:2]
res[...,0 , -1] /= nrm[...,0 ,2 ]
res[...,1:-1,0 ] /= nrm[...,1:2,0 ]
res[...,1:-1,1:-1] /= nrm[...,1:2,1:2]
res[...,1:-1, -1] /= nrm[...,1:2,2 ]
res[..., -1,0 ] /= nrm[...,2 ,0 ]
res[..., -1,1:-1] /= nrm[...,2 ,1:2]
res[..., -1, -1] /= nrm[...,2 ,2 ]
return new_weights
def inverse_mapping( map, max_elem=None, default=None):
""" given a mapping {i:j} we output {j:i}
(the mapping is a torch array)
"""
assert isinstance(map, torch.Tensor) and map.ndim == 1
if max_elem is None: max_elem = map.max()
if default is None:
index = torch.empty(max_elem+1, dtype=torch.int64, device=map.device) # same size as corr, last elem == garbage
else:
index = torch.full((max_elem+1,), default, dtype=torch.int64, device=map.device) # same size as corr, last elem == garbage
index[map] = torch.arange(len(map), device=map.device)
return index
def good_slice( nonzero ):
good = nonzero.nonzero().ravel()
return slice(good.min().item(), good.max().item()+1)
def max_unpool(upper, lower, exclude_border=True):
# re-compute max-pool indices
if exclude_border:
# apparently, we cannot unpool on the bottom and right borders in legacy code (local_argmax with ex=1)
_, pos = F.max_pool2d(lower[:,:,:-1,:-1], 3, padding=1, stride=2, return_indices=True, ceil_mode=True)
W1 = lower.shape[-1]
pos = (pos//(W1-1))*W1 + (pos%(W1-1)) # fix the shortening
else:
_, pos = F.max_pool2d(lower, 3, padding=1, stride=2, return_indices=True)
# because there are potential collisions between overlapping 3x3 cells,
# that pytorch does not handle, we unpool in 4 successive non-overlapping steps.
for i in range(2):
for j in range(2):
# stride=0 instead of 1 because pytorch does some size checking, this is a hack
tmp = F.max_unpool2d(upper[:,:,i::2,j::2], pos[:,:,i::2,j::2], kernel_size=3, padding=0, stride=4, output_size=lower.shape[-2:])
if i == j == 0:
res = tmp
else:
torch.maximum(res, tmp, out=res)
# add scores to existing lower correlation map
lower += res
return lower
def mgrid( shape, **kw ):
""" Returns in (x, y) order (contrary to numpy which is (y,x) """
if isinstance(shape, torch.Tensor): shape = shape.shape
res = torch.meshgrid(*[torch.arange(n, dtype=torch.float32, **kw) for n in shape], indexing='ij')
return torch.stack(res[::-1], dim=-1).view(-1,2)
def check_corres( corres, step, rot=None ):
H, W, two = corres.shape
assert two == 2
if isinstance(corres, np.ndarray):
corres = torch.from_numpy(corres)
if rot is not None:
corres = affmul(rot, corres)
gt = mgrid(corres.shape[:2]).view(H,W,2)
assert ((gt - corres // step).abs() <= 2).float().mean() > 0.99, bb()
def best_correspondences(corr):
""" All positions are returned as x1, y1, x2, y2
"""
if isinstance(corr, tuple): return corr # for legacy
H1, W1, H2, W2 = corr.shape
fix1 = lambda arr: 4*arr+2 # center of cells in img1
div = lambda a,b: torch.div(a, b, rounding_mode='trunc') # because of warning in pytorch 1.9+
# best scores in img1
score1, pos1 = corr.view(H1, W1, H2*W2).max(dim=-1)
pos1 = torch.cat((fix1(mgrid(score1, device=pos1.device)), pos1.view(-1,1)%W2, div(pos1.view(-1,1),W2)), dim=-1)
# best scores in img2
score2, pos2 = max_pool3d( corr, kernel_size=4, stride=4 )
pos2, score2 = pos2.view(-1,1), score2.squeeze()
pos2 = torch.cat((fix1(div(pos2,W2*H2)%W1), fix1(div(pos2,(W1*H2*W2))), pos2%W2, div(pos2,W2)%H2), dim=-1).float()
return (pos1, score1), (pos2, score2)
def intersection( set1_, set2_ ):
""" Returns the indices of values in set1 that are duplicated in set2
"""
set1, map1 = set1_.squeeze().unique(return_inverse=True) # map1: i1 -> j1
set2 = set2_.squeeze().unique()
combined = torch.cat((set1, set2))
uniques, inverse, counts = combined.unique(return_counts=True, return_inverse=True)
# j -> u, i -> j, j -> n
# we are interested only in (j -> i) for n > 1:
# assert counts.max() <= 2, 'there were non-unique values in either set1 or set2'+bb()
# intersected_values = uniques[counts > 1]
inverse1 = inverse_mapping(inverse[:len(set1)], max_elem=len(uniques)-1)
intersected_indices1 = inverse1[counts>1]
return inverse_mapping(map1, max_elem=len(set1)-1)[intersected_indices1]
def reciprocal(self, corres1, corres2 ):
pos1, score1 = corres1
pos2, score2 = corres2
(H1, W1), (H2, W2) = score1.shape, map(lambda i: 4*i+1, score2.shape)
to_int = pos1.new_tensor((W1*H2*W2, H2*W2, W2, 1), dtype=torch.float32)
inter1 = intersection(pos1@to_int, pos2@to_int)
res = torch.cat((pos1[inter1], score1.view(-1,1)[inter1], 0*score1.view(-1,1)[inter1]), dim=-1)
return res
def max_pool3d( corr, kernel_size=4, stride=4 ):
H1, W1, H2, W2 = corr.shape
ks, st = kernel_size, stride
if corr.numel() >= 2**31 and corr.device != torch.device('cpu'):
# re-implementation due to a bug in pytorch
import core.cuda_deepm as kernels
return kernels.max_pool3d( corr.view(1, H1*W1, H2, W2), kernel_size, stride)
else:
return F.max_pool3d( corr.view(1, 1, H1*W1, H2, W2), kernel_size=(H1*W1,ks,ks), stride=(1,st,st), return_indices=True)
def forward_cuda(self, level, lower, weights=None, pooled=False):
import core.cuda_deepm as kernels # must be imported after torch_set_gpu()
assert lower.numel() < 2**31, 'please use cuda-lowmem, pytorch cannot handle big tensors'
pooled = lower if pooled else F.max_pool2d(lower, 3, padding=1, stride=2)
return kernels.forward_agg(level, self.border_inv, pooled, weights)
def forward_cuda_lowmem(self, level, lower, weights=None):
import core.cuda_deepm as kernels # must be imported after torch_set_gpu()
return kernels.forward_pool_agg(level, self.border_inv, lower, weights)
def backward_cuda(self, level, pyramid):
import core.cuda_deepm as kernels # must be imported after torch_set_gpu()
kernels.backward_agg_unpool(level, pyramid[level], pyramid[level-1], True)
# assert not torch.isnan(pyramid[level-1]).any(), bb()
return pyramid[level-1]
def merge_corres(self, corres, rots, all_corres, code):
" rot : reference --> rotated "
all_step = self.matcher.pixel_desc.get_atomic_patch_size() // 2 # step size in all_corres
dev = all_corres[0][1].device
# stack correspondences
corres = [torch.cat((p.view(*s.shape,4),s[:,:,None],torch.full_like(s[:,:,None],code)),dim=2) for (p,s) in corres]
import core.cuda_deepm as kernels # must be imported after torch_set_gpu()
kernels.merge_corres_one_side( corres[0].to(dev), 0, rots[0].to(dev), all_corres[0][1], all_step )
kernels.merge_corres_one_side( corres[1].to(dev), 2, rots[1].to(dev), all_corres[1][1], all_step )
|