Spaces:
Runtime error
Runtime error
File size: 10,364 Bytes
9894f0a e977050 9894f0a e977050 56f7912 e977050 9894f0a e977050 9894f0a e977050 9894f0a e977050 aab4477 9894f0a e977050 b14aa85 e977050 9894f0a e977050 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import spaces
import torch
from pipelines.inverted_ve_pipeline import STYLE_DESCRIPTION_DICT, create_image_grid
import gradio as gr
import os, json
import numpy as np
from PIL import Image
from pipelines.pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline
from diffusers import ControlNetModel, AutoencoderKL
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
from random import randint
from utils import init_latent
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if device == 'cpu':
torch_dtype = torch.float32
else:
torch_dtype = torch.float16
def memory_efficient(model):
try:
model.to(device)
except Exception as e:
print("Error moving model to device:", e)
try:
model.enable_model_cpu_offload()
except AttributeError:
print("enable_model_cpu_offload is not supported.")
try:
model.enable_vae_slicing()
except AttributeError:
print("enable_vae_slicing is not supported.")
# if device == 'cuda':
# try:
# model.enable_xformers_memory_efficient_attention()
# except AttributeError:
# print("enable_xformers_memory_efficient_attention is not supported.")
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-depth-sdxl-1.0", torch_dtype=torch_dtype)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype)
model_controlnet = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch_dtype
)
print("vae")
memory_efficient(vae)
print("control")
memory_efficient(controlnet)
print("ControlNet-SDXL")
memory_efficient(model_controlnet)
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to(device)
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
# controlnet_scale, canny thres 1, 2 (2 > 1, 2:1, 3:1)
def parse_config(config):
with open(config, 'r') as f:
config = json.load(f)
return config
def get_depth_map(image):
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to(device)
with torch.no_grad(), torch.autocast(device):
depth_map = depth_estimator(image).predicted_depth
depth_map = torch.nn.functional.interpolate(
depth_map.unsqueeze(1),
size=(1024, 1024),
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
image = torch.cat([depth_map] * 3, dim=1)
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
return image
def get_depth_edge_array(depth_img_path):
depth_image_tmp = Image.fromarray(depth_img_path)
# get depth map
depth_map = get_depth_map(depth_image_tmp)
return depth_map
def load_example_controlnet():
folder_path = 'assets/ref'
examples = []
for filename in os.listdir(folder_path):
if filename.endswith((".png")):
image_path = os.path.join(folder_path, filename)
image_name = os.path.basename(image_path)
style_name = image_name.split('_')[1]
config_path = './config/{}.json'.format(style_name)
config = parse_config(config_path)
inf_object_name = config["inference_info"]["inf_object_list"][0]
canny_path = './assets/depth_dir/gundam.png'
image_info = [image_path, canny_path, style_name, "", 1, 0.5, 50]
examples.append(image_info)
return examples
@spaces.GPU
def controlnet_fn(image_path, depth_image_path, style_name, content_text, output_number, controlnet_scale=0.5, diffusion_step=50):
"""
:param style_name: ์ด๋ค json ํ์ผ ๋ถ๋ฅผ๊ฑฐ๋ ?
:param content_text: ์ด๋ค ์ฝํ
์ธ ๋ก ๋ณํ๋ฅผ ์ํ๋ ?
:param output_number: ๋ช๊ฐ ์์ฑํ ๊ฑฐ๋ ?
:return:
"""
config_path = './config/{}.json'.format(style_name)
config = parse_config(config_path)
inf_object = content_text
inf_seeds = [randint(0, 10**10) for _ in range(int(output_number))]
# inf_seeds = [i for i in range(int(output_number))]
activate_layer_indices_list = config['inference_info']['activate_layer_indices_list']
activate_step_indices_list = config['inference_info']['activate_step_indices_list']
ref_seed = config['reference_info']['ref_seeds'][0]
attn_map_save_steps = config['inference_info']['attn_map_save_steps']
guidance_scale = config['guidance_scale']
use_inf_negative_prompt = config['inference_info']['use_negative_prompt']
style_name = config["style_name_list"][0]
ref_object = config["reference_info"]["ref_object_list"][0]
ref_with_style_description = config['reference_info']['with_style_description']
inf_with_style_description = config['inference_info']['with_style_description']
use_shared_attention = config['inference_info']['use_shared_attention']
adain_queries = config['inference_info']['adain_queries']
adain_keys = config['inference_info']['adain_keys']
adain_values = config['inference_info']['adain_values']
use_advanced_sampling = config['inference_info']['use_advanced_sampling']
#get canny edge array
depth_image = get_depth_edge_array(depth_image_path)
style_description_pos, style_description_neg = STYLE_DESCRIPTION_DICT[style_name][0], \
STYLE_DESCRIPTION_DICT[style_name][1]
# Inference
with torch.inference_mode():
grid = None
if ref_with_style_description:
ref_prompt = style_description_pos.replace("{object}", ref_object)
else:
ref_prompt = ref_object
if inf_with_style_description:
inf_prompt = style_description_pos.replace("{object}", inf_object)
else:
inf_prompt = inf_object
for activate_layer_indices in activate_layer_indices_list:
for activate_step_indices in activate_step_indices_list:
str_activate_layer, str_activate_step = model_controlnet.activate_layer(
activate_layer_indices=activate_layer_indices,
attn_map_save_steps=attn_map_save_steps,
activate_step_indices=activate_step_indices,
use_shared_attention=use_shared_attention,
adain_queries=adain_queries,
adain_keys=adain_keys,
adain_values=adain_values,
)
# ref_latent = model_controlnet.get_init_latent(ref_seed, precomputed_path=None)
ref_latent = init_latent(model_controlnet, device_name=device, dtype=torch_dtype, seed=ref_seed)
latents = [ref_latent]
for inf_seed in inf_seeds:
# latents.append(model_controlnet.get_init_latent(inf_seed, precomputed_path=None))
inf_latent = init_latent(model_controlnet, device_name=device, dtype=torch_dtype, seed=inf_seed)
latents.append(inf_latent)
latents = torch.cat(latents, dim=0)
latents.to(device)
images = model_controlnet.generated_ve_inference(
prompt=ref_prompt,
negative_prompt=style_description_neg,
guidance_scale=guidance_scale,
num_inference_steps=diffusion_step,
controlnet_conditioning_scale=controlnet_scale,
latents=latents,
num_images_per_prompt=len(inf_seeds) + 1,
target_prompt=inf_prompt,
image=depth_image,
use_inf_negative_prompt=use_inf_negative_prompt,
use_advanced_sampling=use_advanced_sampling
)[0][1:]
n_row = 1
n_col = len(inf_seeds) # ์๋ณธ์ถ๊ฐํ๋ ค๋ฉด + 1
# make grid
grid = create_image_grid(images, n_row, n_col)
return grid
description_md = """
### We introduce `Visual Style Prompting`, which reflects the style of a reference image to the images generated by a pretrained text-to-image diffusion model without finetuning or optimization (e.g., Figure N).
### ๐ [[Paper](https://arxiv.org/abs/2402.12974)] | โจ [[Project page](https://curryjung.github.io/VisualStylePrompt)] | โจ [[Code](https://github.com/naver-ai/Visual-Style-Prompting)]
### ๐ฅ [[Default ver](https://huggingface.co/spaces/naver-ai/VisualStylePrompting)]
---
### โจ Visual Style Prompting also works on `ControlNet` which specifies the shape of the results by depthmap or keypoints.
### ๐ฅ To try out our demo with ControlNet,
1. Upload an `image for depth control`. An off-the-shelf model will produce the depthmap from it.
2. Choose `ControlNet scale` which determines the alignment to the depthmap.
3. Choose a `style reference` from the collection of images below.
4. Enter the `text prompt`. (`Empty text` is okay, but a depthmap description helps.)
5. Choose the `number of outputs`.
### โ ๏ธ w/ ControlNet ver does not support user style images.
### ๐ To achieve faster results, we recommend lowering the diffusion steps to 30.
### Enjoy ! ๐
"""
iface_controlnet = gr.Interface(
fn=controlnet_fn,
inputs=[
gr.components.Image(label="Style image"),
gr.components.Image(label="Depth image"),
gr.components.Textbox(label='Style name', visible=False),
gr.components.Textbox(label="Text prompt", placeholder="Enter Text prompt"),
gr.components.Textbox(label="Number of outputs", placeholder="Enter Number of outputs"),
gr.components.Slider(minimum=0.5, maximum=10, step=0.5, value=0.5, label="Controlnet scale"),
gr.components.Slider(minimum=10, maximum=50, step=10, value=50, label="Diffusion steps")
],
outputs=gr.components.Image(label="Generated Image"),
title="๐จ Visual Style Prompting (w/ ControlNet)",
description=description_md,
examples=load_example_controlnet(),
)
iface_controlnet.launch(debug=True) |