File size: 20,620 Bytes
789ea00
 
06bb5de
 
789ea00
 
 
 
 
 
 
 
 
 
 
9e4f60f
 
 
789ea00
 
 
 
 
 
 
 
 
 
 
9e4f60f
 
f00881a
 
 
 
 
 
 
9e4f60f
 
f00881a
 
 
 
 
 
 
9e4f60f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
789ea00
 
 
 
 
 
 
9e4f60f
f251687
 
789ea00
9e4f60f
 
 
 
789ea00
 
 
 
 
 
 
 
 
 
d213c62
 
789ea00
 
41ba13c
 
 
f00881a
 
 
 
41ba13c
9e4f60f
789ea00
 
9e4f60f
789ea00
41ba13c
9e4f60f
 
41ba13c
789ea00
41ba13c
789ea00
41ba13c
789ea00
9e4f60f
fbfef1e
41ba13c
789ea00
41ba13c
 
789ea00
41ba13c
 
789ea00
41ba13c
 
 
 
 
 
 
 
789ea00
41ba13c
 
789ea00
41ba13c
 
 
fbfef1e
41ba13c
789ea00
41ba13c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
789ea00
41ba13c
 
 
 
f00881a
41ba13c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e4f60f
f00881a
 
 
 
 
 
 
 
41ba13c
f00881a
 
 
 
 
 
 
41ba13c
f00881a
 
41ba13c
f00881a
 
 
41ba13c
f00881a
 
 
 
41ba13c
d213c62
 
 
 
 
 
 
 
 
41ba13c
d213c62
41ba13c
06bb5de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
789ea00
9e4f60f
789ea00
f00881a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e4f60f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
789ea00
41ba13c
5d975b1
41ba13c
2aacd16
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
##### Imports #####

import graphviz

import streamlit as st
import pandas as pd
# import numpy as np

# custom component
from st_keyup import st_keyup

##### Data Functions #####

# What does persist = disk do ?
# @st.cache_data(persist="disk")

### For competitor analysis

@st.cache_data
def load_pandas_xlsx(path):
	data = pd.read_excel(path)
	return data

@st.cache_data
def build_company_df(input_df):
	# build company df
	output_df = input_df[['companyLabel', 'companyLabelJA', 'company']].drop_duplicates()
	return output_df

### For industry analysis

@st.cache_data
def build_industry_df(input_df):
	# Pre compute unique number of companies per industry
	output_df = input_df[['company', 'companyLabel', 'companyLabelJA', 'industry', 'industryLabel', 'industryLabelJA']].drop_duplicates().groupby(['industry', 'industryLabel', 'industryLabelJA'])['company'].count().sort_values(ascending=False).reset_index().copy()
	output_df = output_df.rename(columns={'company': 'n_competitors'})
	return output_df

### For product analysis

@st.cache_data
def build_product_df(input_df):
	# Pre compute unique number of companies per product
	output_df = input_df[['company', 'companyLabel', 'companyLabelJA', 'product', 'productLabel', 'productLabelJA']].drop_duplicates().groupby(['product', 'productLabel', 'productLabelJA'])['company'].count().sort_values(ascending=False).reset_index().copy()
	output_df = output_df.rename(columns={'company': 'n_competitors'})
	return output_df

### For customer analysis

@st.cache_data
def build_company_product_kg(company_product_path, product_manufacturer_path):
    company_product_df = pd.read_csv(company_product_path)
    product_manufacturer_df = pd.read_csv(product_manufacturer_path)
    
    output_df = pd.concat([company_product_df, product_manufacturer_df])
    return output_df

@st.cache_data
def build_company_df_2(input_df):
    # build company df
    output_df = input_df[['companyLabel', 'companyLabelJA', 'company']].drop_duplicates()
    return output_df

property_mapping = {
    'http://www.wikidata.org/prop/direct/P186': 'made_from_material',
    'http://www.wikidata.org/prop/direct/P527': 'has_part',
    'http://www.wikidata.org/prop/direct/P2283': 'uses',
    'http://www.wikidata.org/prop/direct/P31': 'instance_of',
    'http://www.wikidata.org/prop/direct/P366': 'has_use',
    'http://www.wikidata.org/prop/direct/P361': 'part_of'
}

@st.cache_data
def build_product_kg_df():

    product_df_1 = pd.read_csv('data/product_manufacturer_relations_haspart_uses_madefrom_out.csv')
    product_df_2 = pd.read_csv('data/product_relations_haspart_uses_madefrom_out.csv')

    product_df_3 = pd.read_csv('data/product_relations_partof_hasuse_out.csv')
    product_df_4 = pd.read_csv('data/product_manufacturer_relations_hasuse_partof_out.csv')

    product_kg_df = pd.concat([product_df_1, product_df_2, product_df_3, product_df_4]).drop_duplicates()
    product_kg_df['propertyLabel'] = product_kg_df.propertyLabel.apply(lambda x: property_mapping[x])
    
    return product_kg_df

@st.cache_data
def build_product_instance_df():

    product_instance_df_1 = pd.read_csv('data/product_relations_instance_out.csv')
    product_instance_df_2 = pd.read_csv('data/product_manufacturer_relations_instance_out.csv')

    product_instance_df = pd.concat([product_instance_df_1, product_instance_df_2]).drop_duplicates()
    product_instance_df['propertyLabel'] = product_instance_df.propertyLabel.apply(lambda x: property_mapping[x])
    
    return product_instance_df

### For searching

def search_df(inp, df, col):
	mask = df[col].str.contains(inp, case=False, regex=False)
	select_df = df[mask]
	return select_df

##### Data Logic #####

# For competitor and industry analysis
COMPETITOR_PATH = 'data/merged_competitors_all_20241122.xlsx'
INDUSTRY_PATH = 'data/industry_hierarchy_20241125.xlsx'

# For customer analysis
COMPANY_PRODUCT_PATH = 'data/company_product_pairs.csv'
PRODUCT_MANUFACTURER_PATH = 'data/product_manufacturer_pair.csv'

# Load data
with st.spinner(text="Loading competitor data ..."):
	competitor_df = load_pandas_xlsx(COMPETITOR_PATH)
st.success("Competitor Data Loaded!")

# Load data
with st.spinner(text="Build company df ..."):
	company_df = build_company_df(competitor_df)
st.success("Company Data Loaded!")

industry_hierarchy = load_pandas_xlsx(INDUSTRY_PATH)

# industry_data = pd.read_excel('data/industry_hierarchy_20241125.xlsx')

### Pre computation Steps ### 

# Pre compute unique number of companies per industry
industry_to_counts = build_industry_df(competitor_df)

# Pre compute unique number of companies per industry
product_to_counts = build_product_df(competitor_df)

### end ###	

# Title
st.title('3C Competitor / Customer Analysis Demo')

option = st.selectbox(
    "Analysis Mode",
    ("Customer Analysis", "Competitor Analysis", "Industry Analysis", "Product Analysis")
)

st.write("You selected:", option)

##### App Logic #####

if option == "Competitor Analysis":

	st.title("Searching by Company")

	# Get input
	inp = st_keyup("Enter a company name", value="amazon", key="0", debounce=500)

	# Perform search
	select_df = search_df(inp, company_df, 'companyLabel')

	# def show_data():
	# 	select_value = st.session_state.value
	#	row_id=select_value['selection']['rows'][0]
	#	st.write(company_df.iloc[row_id])
		
	# Show search results
	with st.status("Searching ...", state="running", expanded=False) as status:
		status.update(label=f"{len(select_df)} results found", state="complete", expanded=True)

		### Selection for Company ###
		st.dataframe(select_df, on_select="rerun", key="value", selection_mode="single-row")

	# Expand if company is selected
	select_value = st.session_state.value
	if len(select_value['selection']['rows']) > 0:

		st.title("Company Data")

		row_id = select_value['selection']['rows'][0]
		
		row = select_df.iloc[row_id]
		
		entries = competitor_df[competitor_df.company == row.company]

		st.write(f"Company Name: {row.companyLabel}")
		st.write(f"Japanese Name: {row.companyLabelJA}")
		st.write(f"Wikidata URL: {row.company}")


		st.write(f"Cities where Offices Located In: {list(entries.headquartersLabel.unique())}")

		st.write(f"Countries Operated in: {list(entries.countryLabel.unique())}")

		st.write(f"Industries belongs to: {list(set(list(entries.industryLabel.unique()) + list(entries.industryLabelJA.unique())))}")

		st.write(f"Products or Services Provided: {list(set(list(entries.productLabel.unique()) + list(entries.productLabelJA.unique())))}")
		

		st.title("Competitive Analysis by Industry")

		# new: select from pre-computed list
		associated_industries = set(list(entries.industry.unique()))
		wikidata_industries = industry_to_counts[industry_to_counts.industry.apply(lambda x: x in associated_industries)]

		# old: direct computation
		# wikidata_industries = entries[['industry', 'industryLabel', 'industryLabelJA']].drop_duplicates().copy()

		### selection for industry ###
		st.dataframe(wikidata_industries, on_select="rerun", key="industry", selection_mode="single-row")
		select_industry = st.session_state.industry

		# expand if industry if selected
		if len(select_industry['selection']['rows']) > 0:

			industry_id = select_industry['selection']['rows'][0]
			
			industry = wikidata_industries.iloc[industry_id]

			st.title(f"All Competitors for {industry.industryLabel}")

			competitors = competitor_df[competitor_df.industry == industry.industry][['companyLabel', 'companyLabelJA', 'company', 'country', 'countryLabel']].drop_duplicates().copy()
			st.dataframe(competitors)
			# print("------")

			st.title("Analysis by country")

			competitors['countryLabel'] = competitors.countryLabel.fillna('undefined')
			competitors['country'] = competitors.country.fillna('undefined')

			# country_counts = competitors.groupby(['country', 'countryLabel'])['companyLabel'].count().sort_values(ascending=False).reset_index()[:50]

			country_counts = competitors.groupby(['countryLabel', 'country'])['companyLabel'].count().sort_values(ascending=False).reset_index()[:50]
			country_counts = country_counts.rename(columns={'countryLabel': 'countryName', 'country': 'countryWikidata', 'companyLabel': 'countryCounts'})


			### selection for country ###
			st.dataframe(country_counts, on_select="rerun", key="country", selection_mode="single-row")
			select_country = st.session_state.country

			# expand if country is selected
			if len(select_country['selection']['rows']) > 0:

				select_country_id = select_country['selection']['rows'][0]

				select_country = country_counts.iloc[select_country_id]

				competitors_by_country = competitors[competitors.country == select_country.countryWikidata][['companyLabel', 'companyLabelJA', 'company']].copy()

				st.title(f"Companies with industry {industry.industryLabel} in country {select_country.countryName}")
				st.dataframe(competitors_by_country)


elif option == "Industry Analysis":

	st.title("Searching by Industry")

	# Get input
	industry_input = st_keyup("Enter an industry name", value="retail", key="1", debounce=500)

	# Perform search
	industry_select_df = search_df(industry_input, industry_to_counts, 'industryLabel')

	# Show search results
	with st.status("Searching ...", state="running", expanded=False) as status:
		status.update(label=f"{len(industry_select_df)} results found", state="complete", expanded=True)

		### Selection for Industry ###
		st.dataframe(industry_select_df, on_select="rerun", key="industry", selection_mode="single-row")
		select_industry = st.session_state.industry
		
		# expand if industry if selected
		if len(select_industry['selection']['rows']) > 0:

			industry_id = select_industry['selection']['rows'][0]
			
			industry = industry_select_df.iloc[industry_id]

			st.title(f"All Competitors for {industry.industryLabel}")

			competitors = competitor_df[competitor_df.industry == industry.industry][['companyLabel', 'companyLabelJA', 'company', 'country', 'countryLabel']].drop_duplicates().copy()
			st.dataframe(competitors)

			st.title(f'Industry Superclasses of {industry.industryLabel}')

			superclasses = industry_hierarchy[industry_hierarchy.subject == industry.industry][['object', 'objectLabel', 'objectLabelJa']]

			st.dataframe(superclasses)

			st.title(f'Industry Subclasses of {industry.industryLabel}')

			subclasses = industry_hierarchy[industry_hierarchy.object == industry.industry][['subject', 'subjectLabel', 'subjectLabelJa']]

			st.dataframe(subclasses)

			# st.title(f'Hierarchy Graph')

			# Create a graphlib graph object
			# graph = graphviz.Digraph()

			# for sup in superclasses.itertuples():
			# 	graph.edge(sup.industryLabel, industry.industryLabel)

			# for sub in subclasses.itertuples():
			# 	graph.edge(industry.industryLabel, sub.industryLabel)

			# st.graphviz_chart(graph)

			st.title(f'Test Network Graph')

			# Create a graphlib graph object
			graph = graphviz.Digraph()

			graph.edge("run", "intr")
			graph.edge("intr", "runbl")
			graph.edge("runbl", "run")
			graph.edge("run", "kernel")
			graph.edge("kernel", "zombie")
			graph.edge("kernel", "sleep")
			graph.edge("kernel", "runmem")
			graph.edge("sleep", "swap")
			graph.edge("swap", "runswap")
			graph.edge("runswap", "new")
			graph.edge("runswap", "runmem")
			graph.edge("new", "runmem")
			graph.edge("sleep", "runmem")

			st.graphviz_chart(graph)


elif option == "Product Analysis":

	st.title("Searching by Product")

	# Get input
	product_input = st_keyup("Enter an product name", value="computer", key="2", debounce=500)

	# Perform search
	product_select_df = search_df(product_input, product_to_counts, 'productLabel')

	# Show search results
	with st.status("Searching ...", state="running", expanded=False) as status:
		status.update(label=f"{len(product_select_df)} results found", state="complete", expanded=True)

		### Selection for Product ###
		st.dataframe(product_select_df, on_select="rerun", key="product", selection_mode="single-row")
		select_product = st.session_state.product
		
		# expand if product if selected
		if len(select_product['selection']['rows']) > 0:

			product_id = select_product['selection']['rows'][0]
			
			product = product_select_df.iloc[product_id]

			st.title(f"All Competitors for {product.productLabel}")

			competitors = competitor_df[competitor_df['product'] == product['product']][['companyLabel', 'companyLabelJA', 'company', 'country', 'countryLabel']].drop_duplicates().copy()
			st.dataframe(competitors)

elif option == "Customer Analysis":

	# Load data
	with st.spinner(text="Build company product knowledge graph ..."):
		company_product_kg_df = build_company_product_kg(COMPANY_PRODUCT_PATH, PRODUCT_MANUFACTURER_PATH)
		company_df_2 = build_company_df_2(company_product_kg_df)
	st.success("Company Product Knowledge Graph Loaded!")

	with st.spinner(text="Build product relationship knowledge graph ..."):
		product_kg_df = build_product_kg_df()
	st.success("Product Relationship Knowledge Graph Loaded!")

	with st.spinner(text="Build product instance knowledge graph ..."):
		product_instance_df = build_product_instance_df()
	st.success("Product Instance Knowledge Graph Loaded!")

	### Search Start

	st.title("Searching by Company")

	# Get input
	inp = st_keyup("Enter a company name", value="toshiba", key="0", debounce=500)

	# Perform search
	select_df = search_df(inp, company_df_2, 'companyLabel')

	# def show_data():
	# 	select_value = st.session_state.value
	#	row_id=select_value['selection']['rows'][0]
	#	st.write(company_df.iloc[row_id])
		
	# Show search results
	with st.status("Searching ...", state="running", expanded=False) as status:
		status.update(label=f"{len(select_df)} results found", state="complete", expanded=True)

		### Selection for Company ###
		st.dataframe(select_df, on_select="rerun", key="value", selection_mode="single-row")


		# Expand if company is selected
		select_value = st.session_state.value
		if len(select_value['selection']['rows']) > 0:

			st.title("Company Data")

			row_id = select_value['selection']['rows'][0]
			
			row = select_df.iloc[row_id]
			
			entries = company_product_kg_df[company_product_kg_df.company == row.company]

			st.write(f"Company Name: {row.companyLabel}")
			st.write(f"Japanese Name: {row.companyLabelJA}")
			st.write(f"Wikidata URL: {row.company}")

			# st.write(f"Products or Services Provided: {list(set(list(entries.productLabel.unique()) + list(entries.productLabelJA.unique())))}")

			st.write(f"Products and services provided by {row.companyLabel}")

			product_select_df = company_product_kg_df[(company_product_kg_df.company == row.company) & (company_product_kg_df.propertyLabel == 'product_or_service_provided')][['productLabel', 'productLabelJA', 'product', 'company', 'companyLabel', 'companyLabelJA']]

			### Selection for Product ###
			st.dataframe(product_select_df, on_select="rerun", key="product", selection_mode="single-row")
			select_product = st.session_state.product


			# expand if product if selected
			if len(select_product['selection']['rows']) > 0:

				product_id = select_product['selection']['rows'][0]
				
				target_product = product_select_df.iloc[product_id]

				# st.title(f"All Product Categories produced by {row.companyLabel}")
				# st.dataframe(competitors)

				# Hypothesis
				# for incoming relations: 'uses' of 'has_part' is useful, since it lists services that have selected product as a component
				# for outgoing relations: 'has_use' and 'part_of' is useful, since it lists services that have selected product as a component


				####### Build kg paths

				### Step 1 ###

				start_df = pd.DataFrame()
				start_df[['company_start', 'companyLabel_start', 'companyLabelJA_start', 'product_start', 'productLabel_start', 'productLabelJA_start']] = [[target_product.company, target_product.companyLabel, target_product.companyLabelJA, target_product['product'], target_product.productLabel, target_product.productLabelJA]]

				### Step 2 ###

				related_out_df = product_kg_df[(product_kg_df['product'] == target_product['product']) & (product_kg_df['propertyLabel'].apply(lambda x: x in ['has_use', 'part_of']))]
				related_in_df = product_kg_df[(product_kg_df['object'] == target_product['product']) & (product_kg_df['propertyLabel'].apply(lambda x: x in ['uses', 'has_part']))]

				path_df = pd.concat(
					[
						start_df.merge(related_out_df[['product', 'object', 'objectLabel', 'objectLabelJa']], left_on='product_start', right_on='product').drop(columns=['product']).rename(columns={'object': 'product_second', 'objectLabel': 'productLabel_second', 'objectLabelJa': 'productLabelJa_second'}),
						start_df.merge(related_in_df[['object', 'product', 'productLabel', 'productLabelJa']], left_on='product_start', right_on='object').drop(columns=['object']).rename(columns={'product': 'product_second', 'productLabel': 'productLabel_second', 'productLabelJa': 'productLabelJa_second'}),
					]
				)

				# merge 1

				### Step 3a ###

				path_df_1 = path_df.merge(company_product_kg_df[['company', 'companyLabel', 'companyLabelJA', 'product']], left_on='product_second', right_on='product').drop(columns=['product'])

				### Step 3b ###

				path_df_2 = path_df.merge(product_instance_df[['object', 'objectLabel', 'objectLabelJa', 'product']], left_on='product_second', right_on='product').drop(columns=['product']).rename(columns={'object': 'product_third', 'objectLabel': 'productLabel_third', 'objectLabelJa': 'productLabelJa_third'})
				path_df_2 = path_df_2.merge(company_product_kg_df[['company', 'companyLabel', 'companyLabelJA', 'product']], left_on='product_third', right_on='product').drop(columns=['product'])

				### Step 3c ###

				path_df_3 = path_df.merge(product_instance_df[['object', 'objectLabel', 'objectLabelJa', 'product']], left_on='product_second', right_on='product').drop(columns=['product']).rename(columns={'object': 'product_third', 'objectLabel': 'productLabel_third', 'objectLabelJa': 'productLabelJa_third'})
				path_df_3 = path_df_3.merge(product_instance_df[['product', 'productLabel', 'productLabelJa', 'object']], left_on='product_third', right_on='object').drop(columns=['object']).rename(columns={'product': 'product_fourth', 'productLabel': 'productLabel_fourth', 'productLabelJa': 'productLabelJa_fourth'})
				path_df_3 = path_df_3.merge(company_product_kg_df[['company', 'companyLabel', 'companyLabelJA', 'product']], left_on='product_fourth', right_on='product').drop(columns=['product'])

				### Step 5 ###

				path_df_1['length'] = 4
				path_df_2['length'] = 5
				path_df_3['length'] = 6

				final_path_df = pd.concat([path_df_1, path_df_2, path_df_3])

				final_path_df = final_path_df.reset_index(drop=True)
				final_path_df['path_id'] = final_path_df.index
				#final_path_df = final_path_df.set_index('path_id', drop=False)

				final_company_df = final_path_df[['path_id', 'company', 'companyLabel', 'companyLabelJA']].copy()

				### Step 6 ###

				st.title(f"Potential Customers for {target_product.companyLabel} for product {target_product.productLabel}")

				# st.dataframe(final_company_df)

				st.dataframe(final_company_df, on_select="rerun", key="customer", selection_mode="single-row")
				select_customer = st.session_state.customer

				if len(select_customer['selection']['rows']) > 0:

					customer_id = select_customer['selection']['rows'][0]
					target_customer = final_company_df.iloc[customer_id]

					customer_df = final_path_df[final_path_df.path_id == target_customer.path_id].iloc[0]		

					# import graphviz

					# Create a graphlib graph object
					graph = graphviz.Digraph()

					graph.edge(customer_df.companyLabel_start, customer_df.productLabel_start, label='  produces')
					graph.edge(customer_df.productLabel_start, customer_df.productLabel_second, label='  part of')

					if customer_df.length == 4:
						graph.edge(customer_df.productLabel_second, customer_df.companyLabel, label= '  produced by')

					elif customer_df.length == 5:
						graph.edge(customer_df.productLabel_second, customer_df.productLabel_third, label='  instance of')
						graph.edge(customer_df.productLabel_third, customer_df.companyLabel, label= '  produced by')

					if customer_df.length == 6:
						graph.edge(customer_df.productLabel_second, customer_df.productLabel_third, label='  instance of')
						graph.edge(customer_df.productLabel_fourth, customer_df.productLabel_third, '  instance of')
						graph.edge(customer_df.productLabel_fourth, customer_df.companyLabel, label= '  produced by')

					st.graphviz_chart(graph)





else:

	st.write("no option selected")