Spaces:
Runtime error
Runtime error
import io | |
import matplotlib.pyplot as plt | |
import requests | |
import streamlit as st | |
import torch | |
from PIL import Image | |
from transformers import DetrFeatureExtractor, DetrForObjectDetection | |
# colors for visualization | |
COLORS = [ | |
[0.000, 0.447, 0.741], | |
[0.850, 0.325, 0.098], | |
[0.929, 0.694, 0.125], | |
[0.494, 0.184, 0.556], | |
[0.466, 0.674, 0.188], | |
[0.301, 0.745, 0.933] | |
] | |
def get_hf_components(model_name_or_path): | |
feature_extractor = DetrFeatureExtractor.from_pretrained(model_name_or_path) | |
model = DetrForObjectDetection.from_pretrained(model_name_or_path) | |
model.eval() | |
return feature_extractor, model | |
def get_img_from_url(url): | |
return Image.open(requests.get(url, stream=True).raw) | |
def fig2img(fig): | |
buf = io.BytesIO() | |
fig.savefig(buf) | |
buf.seek(0) | |
img = Image.open(buf) | |
return img | |
def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None): | |
keep = output_dict["scores"] > threshold | |
boxes = output_dict["boxes"][keep].tolist() | |
scores = output_dict["scores"][keep].tolist() | |
labels = output_dict["labels"][keep].tolist() | |
if id2label is not None: | |
labels = [id2label[x] for x in labels] | |
plt.figure(figsize=(16, 10)) | |
plt.imshow(pil_img) | |
ax = plt.gca() | |
colors = COLORS * 100 | |
for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors): | |
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3)) | |
ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5)) | |
plt.axis("off") | |
return fig2img(plt.gcf()) | |
def make_prediction(img, feature_extractor, model): | |
inputs = feature_extractor(img, return_tensors="pt") | |
outputs = model(**inputs) | |
img_size = torch.tensor([tuple(reversed(img.size))]) | |
processed_outputs = feature_extractor.post_process(outputs, img_size) | |
return processed_outputs[0] | |
def main(): | |
option = st.selectbox("Which model should we use?", ("facebook/detr-resnet-50", "facebook/detr-resnet-101")) | |
feature_extractor, model = get_hf_components(option) | |
url = st.text_input("URL to some image", "http://images.cocodataset.org/val2017/000000039769.jpg") | |
img = get_img_from_url(url) | |
processed_outputs = make_prediction(img, feature_extractor, model) | |
threshold = st.slider("Prediction Threshold", 0.0, 1.0, 0.7) | |
viz_img = visualize_prediction(img, processed_outputs, threshold, model.config.id2label) | |
st.image(viz_img) | |
if __name__ == "__main__": | |
main() | |