|
import gradio as gr |
|
import pandas as pd |
|
import plotly.graph_objects as go |
|
|
|
def get_covered_languages(): |
|
|
|
all_languages = pd.read_csv('data/merged_language_list_with_duplicates.csv') |
|
with open("data/covered_languages.txt") as f: |
|
covered_languages = f.read().splitlines() |
|
|
|
|
|
covered_languages = [lang.strip() for sublist in covered_languages for lang in sublist.split(',')] |
|
covered_languages = list(set(covered_languages)) |
|
|
|
|
|
covered_language_codes = [all_languages.loc[all_languages['Language'] == lang, 'Code'].values[0] for lang in covered_languages if lang in all_languages['Language'].values] |
|
assert len(covered_language_codes) == len(covered_languages), "Mismatch between covered languages and their codes" |
|
return covered_language_codes |
|
|
|
def build_dataframes(covered_language_codes): |
|
|
|
clean_languages = pd.read_csv('data/merged_language_list_clean.csv') |
|
|
|
|
|
languages_with_lead = clean_languages[clean_languages['Code'].isin(covered_language_codes)].sort_values(by='Code') |
|
|
|
|
|
languages_without_lead = clean_languages[~clean_languages['Code'].isin(covered_language_codes)].sort_values(by='Code') |
|
return languages_with_lead, languages_without_lead |
|
|
|
|
|
def create_piechart(): |
|
|
|
colors = ['#ffd21e', '#0b4a70'] |
|
fig = go.Figure( |
|
go.Pie( |
|
labels=["With lead", "Without lead"], |
|
values=[len(languages_with_lead), len(languages_without_lead)], |
|
marker=dict(colors=colors) |
|
) |
|
) |
|
|
|
fig.update_traces(textposition='inside', textinfo='label+value') |
|
|
|
return fig |
|
|
|
def filter_dataframes(search_term=None): |
|
if search_term: |
|
search_terms = search_term.lower().split(" ") |
|
filtered_with_lead = languages_with_lead[ |
|
languages_with_lead.apply(lambda row: any(term in str(row['Language']).lower() or term in str(row['Code']).lower() for term in search_terms), axis=1) |
|
] |
|
filtered_without_lead = languages_without_lead[ |
|
languages_without_lead.apply(lambda row: any(term in str(row['Language']).lower() or term in str(row['Code']).lower() for term in search_terms), axis=1) |
|
] |
|
return filtered_without_lead, filtered_with_lead |
|
else: |
|
return languages_without_lead, languages_with_lead |
|
|
|
def load_demo(): |
|
languages_with_lead, languages_without_lead = build_dataframes(get_covered_languages()) |
|
piechart = create_piechart() |
|
return languages_without_lead,languages_with_lead,piechart |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## Language Leads Dashboard") |
|
languages_with_lead, languages_without_lead = build_dataframes(get_covered_languages()) |
|
gr_piechart = gr.Plot(label="Language Leads") |
|
|
|
search_box = gr.Textbox(type="text", label="Search your language:") |
|
with gr.Row(): |
|
search_button = gr.Button("Search π") |
|
reset_button = gr.Button("Reset π") |
|
|
|
with gr.Tab("Looking for leads!"): |
|
gr.Markdown("These languages don't have a lead yet! Would you like to lead one of them? Sign up using [this form](https://forms.gle/mFCMXNRjxvyFvW5q9).") |
|
gr_languages_without_lead = gr.DataFrame() |
|
with gr.Tab("Languages with leads"): |
|
gr.Markdown("We found at least one lead for these languages:") |
|
gr_languages_with_lead = gr.DataFrame() |
|
|
|
demo.load( |
|
load_demo, |
|
outputs=[gr_languages_without_lead, gr_languages_with_lead, gr_piechart], |
|
) |
|
search_button.click( |
|
fn=filter_dataframes, |
|
inputs=search_box, |
|
outputs=[gr_languages_without_lead,gr_languages_with_lead] |
|
) |
|
reset_button.click( |
|
fn=filter_dataframes, |
|
inputs=None, |
|
outputs=[gr_languages_without_lead,gr_languages_with_lead] |
|
) |
|
|
|
demo.launch() |