py2DIC / app.py
andreanascetti
added template matching
cf0b6b1
import numpy as np
import pandas as pd
from PIL import Image
import streamlit as st
from streamlit_drawable_canvas import st_canvas
from streamlit_image_select import image_select
from streamlit_sortables import sort_items
from py4matching import template as m
def expand2square(imgpath, background_color=(0, 0, 0)):
pil_img = Image.open(imgpath)
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result.resize((700, 700))
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result.resize((700, 700))
@st.cache_data
def loading_data(files):
imgs = []
imgs_names = []
imgs_dict = {}
for file in files:
image = expand2square(file)
imgs.append(image)
imgs_names.append(file.name)
imgs_dict[file.name] = image
return imgs, imgs_names, imgs_dict
if 'uploaded' not in st.session_state:
st.session_state['uploaded'] = False
images = st.sidebar.file_uploader("Upload here the images (max 4 imgs for demo version):",
type=["png", "jpg"], accept_multiple_files=True)
if len(images) > 0:
st.session_state['uploaded'] = True
imgs_path = []
imgs = []
else:
st.session_state['uploaded'] = False
if st.session_state['uploaded'] is True:
# Loading uploaded images and cache the data
imgs, imgs_path, imgs_dict = loading_data(images)
# Specify canvas parameters in application
drawing_mode = st.sidebar.selectbox(
"Drawing tool:", ("point", "line", "rect", "circle", "transform")
)
stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 3)
if drawing_mode == 'point':
point_display_radius = st.sidebar.slider("Point display radius: ", 1, 25, 3)
stroke_color = st.sidebar.color_picker("Stroke color hex: ")
bg_color = st.sidebar.color_picker("Background color hex: ", "#eee")
realtime_update = st.sidebar.checkbox("Update in realtime", False)
master_index = image_select("Uploaded images", imgs, captions=imgs_path, return_value="index")
# Create a canvas component
canvas_result = st_canvas(
fill_color="rgba(255, 165, 0, 0.3)", # Fixed fill color with some opacity
stroke_width=stroke_width,
stroke_color=stroke_color,
background_color=bg_color,
background_image= imgs[master_index], #expand2square(bg_image) if bg_image else expand2square("./IMG_02099.jpg"),
update_streamlit=realtime_update,
height=700,
width=700,
drawing_mode=drawing_mode,
point_display_radius=point_display_radius if drawing_mode == 'point' else 0,
key="canvas",
)
test = st.sidebar.write("Select the processing order of slave images")
with st.sidebar:
imgs_path2 = imgs_path.copy()
imgs_path2.pop(master_index)
sorted_items = sort_items(imgs_path2, multi_containers=False, direction='vertical')
TEMPLATE_SIZE = 64
SEARCH_BUFFER = 32
# if canvas_result.image_data is not None:
# st.image(canvas_result.image_data)
if canvas_result.json_data is not None:
df = pd.json_normalize(canvas_result.json_data["objects"]) # need to convert obj to str because PyArrow
if 'type' in df.keys():
#st.write(df.keys())
df = df[['type', 'left', 'top']]
df[sorted_items] = np.nan
for index, row in df.iterrows():
#print(row['type'], row['top'])
i = int(row['left'])
j = int(row['top'])
template = np.array(imgs[master_index])[j:j+TEMPLATE_SIZE,
i:i+TEMPLATE_SIZE]
# Loop on slave imgs
st.image(template)
for item in sorted_items:
st.write(item)
search_area = np.array(imgs_dict[item])[j-SEARCH_BUFFER:j+TEMPLATE_SIZE+SEARCH_BUFFER,
i-SEARCH_BUFFER:i+TEMPLATE_SIZE+SEARCH_BUFFER]
st.image(search_area)
px, py, max_val = m.template_match(template.astype('uint8'), search_area.astype('uint8'))
st.write(py)
#Covert df to string for printing
for col in df.select_dtypes(include=['object']).columns:
df[col] = df[col].astype("str")
st.dataframe(df)