Caleb Spradlin commited on
Commit
4d01101
·
1 Parent(s): a041e91

Initial commit

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. app.py +170 -0
  2. images/images/ft_demo_1000_1071_img.png +0 -0
  3. images/images/ft_demo_1000_1076_img.png +0 -0
  4. images/images/ft_demo_1000_1541_img.png +0 -0
  5. images/images/ft_demo_100_1071_img.png +0 -0
  6. images/images/ft_demo_100_1076_img.png +0 -0
  7. images/images/ft_demo_100_1541_img.png +0 -0
  8. images/images/ft_demo_10_1071_img.png +0 -0
  9. images/images/ft_demo_10_1076_img.png +0 -0
  10. images/images/ft_demo_10_1541_img.png +0 -0
  11. images/images/ft_demo_5000_1071_img.png +0 -0
  12. images/images/ft_demo_5000_1076_img.png +0 -0
  13. images/images/ft_demo_5000_1541_img.png +0 -0
  14. images/images/ft_demo_500_1071_img.png +0 -0
  15. images/images/ft_demo_500_1076_img.png +0 -0
  16. images/images/ft_demo_500_1541_img.png +0 -0
  17. images/labels/ft_demo_1000_1071_label.png +0 -0
  18. images/labels/ft_demo_1000_1076_label.png +0 -0
  19. images/labels/ft_demo_1000_1541_label.png +0 -0
  20. images/labels/ft_demo_100_1071_label.png +0 -0
  21. images/labels/ft_demo_100_1076_label.png +0 -0
  22. images/labels/ft_demo_100_1541_label.png +0 -0
  23. images/labels/ft_demo_10_1071_label.png +0 -0
  24. images/labels/ft_demo_10_1076_label.png +0 -0
  25. images/labels/ft_demo_10_1541_label.png +0 -0
  26. images/labels/ft_demo_5000_1071_label.png +0 -0
  27. images/labels/ft_demo_5000_1076_label.png +0 -0
  28. images/labels/ft_demo_5000_1541_label.png +0 -0
  29. images/labels/ft_demo_500_1071_label.png +0 -0
  30. images/labels/ft_demo_500_1076_label.png +0 -0
  31. images/labels/ft_demo_500_1541_label.png +0 -0
  32. images/predictions/10/cnn/ft_cnn_demo_10_1071_pred.png +0 -0
  33. images/predictions/10/cnn/ft_cnn_demo_10_1076_pred.png +0 -0
  34. images/predictions/10/cnn/ft_cnn_demo_10_1541_pred.png +0 -0
  35. images/predictions/10/svb/ft_demo_10_1071_pred.png +0 -0
  36. images/predictions/10/svb/ft_demo_10_1076_pred.png +0 -0
  37. images/predictions/10/svb/ft_demo_10_1541_pred.png +0 -0
  38. images/predictions/100/cnn/ft_cnn_demo_100_1071_pred.png +0 -0
  39. images/predictions/100/cnn/ft_cnn_demo_100_1076_pred.png +0 -0
  40. images/predictions/100/cnn/ft_cnn_demo_100_1541_pred.png +0 -0
  41. images/predictions/100/svb/ft_demo_100_1071_pred.png +0 -0
  42. images/predictions/100/svb/ft_demo_100_1076_pred.png +0 -0
  43. images/predictions/100/svb/ft_demo_100_1541_pred.png +0 -0
  44. images/predictions/1000/cnn/ft_cnn_demo_1000_1071_pred.png +0 -0
  45. images/predictions/1000/cnn/ft_cnn_demo_1000_1076_pred.png +0 -0
  46. images/predictions/1000/cnn/ft_cnn_demo_1000_1541_pred.png +0 -0
  47. images/predictions/1000/svb/ft_demo_1000_1071_pred.png +0 -0
  48. images/predictions/1000/svb/ft_demo_1000_1076_pred.png +0 -0
  49. images/predictions/1000/svb/ft_demo_1000_1541_pred.png +0 -0
  50. images/predictions/500/cnn/ft_cnn_demo_500_1071_pred.png +0 -0
app.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from pathlib import Path
3
+
4
+
5
+ # -----------------------------------------------------------------------------
6
+ # main
7
+ # -----------------------------------------------------------------------------
8
+ def main():
9
+ st.title("SatVision Few-Shot Comparison")
10
+
11
+ selected_option = st.select_slider(
12
+ "## Number of training samples",
13
+ options=[10, 100, 500, 1000, 5000])
14
+
15
+ st.markdown('Move slider to select how many training ' + \
16
+ 'samples the models were trained on')
17
+
18
+ images = load_images(selected_option, Path('./images/images'))
19
+
20
+ labels = load_labels(selected_option, Path('./images/labels'))
21
+
22
+ preds = load_predictions(selected_option, Path('./images/predictions'))
23
+
24
+ zipped_st_images = zip(images, preds['svb'], preds['unet'], labels)
25
+
26
+ grid = make_grid(4, 4)
27
+
28
+ for i, (image_data, svb_data, unet_data, label_data) in \
29
+ enumerate(zipped_st_images):
30
+
31
+ if i == 0:
32
+
33
+ grid[0][0].markdown(f'## MOD09GA 3-2-1 Image Chip')
34
+ grid[0][1].markdown(f'## SatVision-B Prediction')
35
+ grid[0][2].markdown(f'## UNet (CNN) Prediction')
36
+ grid[0][3].markdown(f'## MCD12Q1 LandCover Target')
37
+
38
+ grid[i][0].image(image_data[0], image_data[1], use_column_width=True)
39
+ grid[i][1].image(svb_data[0], svb_data[1], use_column_width=True)
40
+ grid[i][2].image(unet_data[0], unet_data[1], use_column_width=True)
41
+ grid[i][3].image(label_data[0], label_data[1], use_column_width=True)
42
+
43
+ st.text("Additional Information:")
44
+ st.text("This is a placeholder for additional information about the images.")
45
+
46
+ # -----------------------------------------------------------------------------
47
+ # load_images
48
+ # -----------------------------------------------------------------------------
49
+ def load_images(selected_option: str, image_dir: Path):
50
+ """
51
+ Given a selected option and image dir, return streamlit image objects.
52
+ """
53
+
54
+ image_paths = find_images(selected_option, image_dir)
55
+
56
+ images = [(str(path), f"MOD09GA 3-2-1 H18v04 2019 Example {i}") for \
57
+ i, path in enumerate(image_paths, 1)]
58
+
59
+ return images
60
+
61
+ # -----------------------------------------------------------------------------
62
+ # find_images
63
+ # -----------------------------------------------------------------------------
64
+ def find_images(selected_option: str, image_dir: Path):
65
+
66
+ images_regex = f'ft_demo_{selected_option}_*_img.png'
67
+
68
+ images_matching_regex = sorted(image_dir.glob(images_regex))
69
+
70
+ assert len(images_matching_regex) == 3, "Should be 3 images matching regex"
71
+
72
+ assert '1071' in str(images_matching_regex[0]), 'Should be 1071'
73
+
74
+ return images_matching_regex
75
+
76
+
77
+ # -----------------------------------------------------------------------------
78
+ # load_labels
79
+ # -----------------------------------------------------------------------------
80
+ def load_labels(selected_option, label_dir: Path):
81
+ label_paths = find_labels(selected_option, label_dir)
82
+
83
+ labels = [(str(path), f"MCD12Q1 LandCover Target Example {i}") for \
84
+ i, path in enumerate(label_paths, 1)]
85
+
86
+ return labels
87
+
88
+
89
+ # -----------------------------------------------------------------------------
90
+ # find_labels
91
+ # -----------------------------------------------------------------------------
92
+ def find_labels(selected_option: str, label_dir: Path):
93
+
94
+ labels_regex = f'ft_demo_{selected_option}_*_label.png'
95
+
96
+ labels_matching_regex = sorted(label_dir.glob(labels_regex))
97
+
98
+ assert len(labels_matching_regex) == 3, \
99
+ "Should be 3 label images matching regex"
100
+
101
+ assert '1071' in str(labels_matching_regex[0]), 'Should be 1071'
102
+
103
+ return labels_matching_regex
104
+
105
+
106
+ # -----------------------------------------------------------------------------
107
+ # load_predictions
108
+ # -----------------------------------------------------------------------------
109
+ def load_predictions(selected_option: str, pred_dir: Path):
110
+ svb_pred_paths = find_preds(selected_option, pred_dir, 'svb')
111
+
112
+ unet_pred_paths = find_preds(selected_option, pred_dir, 'cnn')
113
+
114
+ svb_preds = [(str(path), f"SatVision-B Prediction Example {i}") for \
115
+ i, path in enumerate(svb_pred_paths, 1)]
116
+
117
+ unet_preds = [(str(path), f"Unet Prediction Example {i}") for \
118
+ i, path in enumerate(unet_pred_paths, 1)]
119
+
120
+ prediction_dict = {'svb': svb_preds, 'unet': unet_preds}
121
+
122
+ return prediction_dict
123
+
124
+
125
+ # -----------------------------------------------------------------------------
126
+ # find_preds
127
+ # -----------------------------------------------------------------------------
128
+ def find_preds(selected_option: int, pred_dir: Path, model: str):
129
+
130
+ if model == 'cnn':
131
+
132
+ pred_regex = f'ft_cnn_demo_{selected_option}_*_pred.png'
133
+
134
+ else:
135
+ pred_regex = f'ft_demo_{selected_option}_*_pred.png'
136
+
137
+ model_specific_dir = pred_dir / str(selected_option) / model
138
+
139
+ assert model_specific_dir.exists(), f'{model_specific_dir} does not exist'
140
+
141
+ preds_matching_regex = sorted(model_specific_dir.glob(pred_regex))
142
+
143
+ assert len(preds_matching_regex) == 3, \
144
+ "Should be 3 prediction images matching regex"
145
+
146
+ assert '1071' in str(preds_matching_regex[0]), 'Should be 1071'
147
+
148
+ return preds_matching_regex
149
+
150
+
151
+ # -----------------------------------------------------------------------------
152
+ # make_grid
153
+ # -----------------------------------------------------------------------------
154
+ def make_grid(cols,rows):
155
+
156
+ grid = [0]*cols
157
+
158
+ for i in range(cols):
159
+
160
+ with st.container():
161
+
162
+ grid[i] = st.columns(rows, gap='large')
163
+
164
+ return grid
165
+
166
+ # -----------------------------------------------------------------------------
167
+ # Main execution
168
+ # -----------------------------------------------------------------------------
169
+ if __name__ == "__main__":
170
+ main()
images/images/ft_demo_1000_1071_img.png ADDED
images/images/ft_demo_1000_1076_img.png ADDED
images/images/ft_demo_1000_1541_img.png ADDED
images/images/ft_demo_100_1071_img.png ADDED
images/images/ft_demo_100_1076_img.png ADDED
images/images/ft_demo_100_1541_img.png ADDED
images/images/ft_demo_10_1071_img.png ADDED
images/images/ft_demo_10_1076_img.png ADDED
images/images/ft_demo_10_1541_img.png ADDED
images/images/ft_demo_5000_1071_img.png ADDED
images/images/ft_demo_5000_1076_img.png ADDED
images/images/ft_demo_5000_1541_img.png ADDED
images/images/ft_demo_500_1071_img.png ADDED
images/images/ft_demo_500_1076_img.png ADDED
images/images/ft_demo_500_1541_img.png ADDED
images/labels/ft_demo_1000_1071_label.png ADDED
images/labels/ft_demo_1000_1076_label.png ADDED
images/labels/ft_demo_1000_1541_label.png ADDED
images/labels/ft_demo_100_1071_label.png ADDED
images/labels/ft_demo_100_1076_label.png ADDED
images/labels/ft_demo_100_1541_label.png ADDED
images/labels/ft_demo_10_1071_label.png ADDED
images/labels/ft_demo_10_1076_label.png ADDED
images/labels/ft_demo_10_1541_label.png ADDED
images/labels/ft_demo_5000_1071_label.png ADDED
images/labels/ft_demo_5000_1076_label.png ADDED
images/labels/ft_demo_5000_1541_label.png ADDED
images/labels/ft_demo_500_1071_label.png ADDED
images/labels/ft_demo_500_1076_label.png ADDED
images/labels/ft_demo_500_1541_label.png ADDED
images/predictions/10/cnn/ft_cnn_demo_10_1071_pred.png ADDED
images/predictions/10/cnn/ft_cnn_demo_10_1076_pred.png ADDED
images/predictions/10/cnn/ft_cnn_demo_10_1541_pred.png ADDED
images/predictions/10/svb/ft_demo_10_1071_pred.png ADDED
images/predictions/10/svb/ft_demo_10_1076_pred.png ADDED
images/predictions/10/svb/ft_demo_10_1541_pred.png ADDED
images/predictions/100/cnn/ft_cnn_demo_100_1071_pred.png ADDED
images/predictions/100/cnn/ft_cnn_demo_100_1076_pred.png ADDED
images/predictions/100/cnn/ft_cnn_demo_100_1541_pred.png ADDED
images/predictions/100/svb/ft_demo_100_1071_pred.png ADDED
images/predictions/100/svb/ft_demo_100_1076_pred.png ADDED
images/predictions/100/svb/ft_demo_100_1541_pred.png ADDED
images/predictions/1000/cnn/ft_cnn_demo_1000_1071_pred.png ADDED
images/predictions/1000/cnn/ft_cnn_demo_1000_1076_pred.png ADDED
images/predictions/1000/cnn/ft_cnn_demo_1000_1541_pred.png ADDED
images/predictions/1000/svb/ft_demo_1000_1071_pred.png ADDED
images/predictions/1000/svb/ft_demo_1000_1076_pred.png ADDED
images/predictions/1000/svb/ft_demo_1000_1541_pred.png ADDED
images/predictions/500/cnn/ft_cnn_demo_500_1071_pred.png ADDED