|
from bisect import bisect_right |
|
|
|
from timm.scheduler.cosine_lr import CosineLRScheduler |
|
from timm.scheduler.step_lr import StepLRScheduler |
|
from timm.scheduler.scheduler import Scheduler |
|
|
|
import torch |
|
import torch.distributed as dist |
|
|
|
|
|
def build_scheduler(config, optimizer, n_iter_per_epoch): |
|
num_steps = int(config.TRAIN.EPOCHS * n_iter_per_epoch) |
|
warmup_steps = int(config.TRAIN.WARMUP_EPOCHS * n_iter_per_epoch) |
|
decay_steps = int( |
|
config.TRAIN.LR_SCHEDULER.DECAY_EPOCHS * n_iter_per_epoch) |
|
multi_steps = [ |
|
i * n_iter_per_epoch for i in config.TRAIN.LR_SCHEDULER.MULTISTEPS] |
|
|
|
lr_scheduler = None |
|
if config.TRAIN.LR_SCHEDULER.NAME == 'cosine': |
|
lr_scheduler = CosineLRScheduler( |
|
optimizer, |
|
t_initial=num_steps, |
|
cycle_mul=1., |
|
lr_min=config.TRAIN.MIN_LR, |
|
warmup_lr_init=config.TRAIN.WARMUP_LR, |
|
warmup_t=warmup_steps, |
|
cycle_limit=1, |
|
t_in_epochs=False, |
|
) |
|
elif config.TRAIN.LR_SCHEDULER.NAME == 'linear': |
|
lr_scheduler = LinearLRScheduler( |
|
optimizer, |
|
t_initial=num_steps, |
|
lr_min_rate=0.01, |
|
warmup_lr_init=config.TRAIN.WARMUP_LR, |
|
warmup_t=warmup_steps, |
|
t_in_epochs=False, |
|
) |
|
elif config.TRAIN.LR_SCHEDULER.NAME == 'step': |
|
lr_scheduler = StepLRScheduler( |
|
optimizer, |
|
decay_t=decay_steps, |
|
decay_rate=config.TRAIN.LR_SCHEDULER.DECAY_RATE, |
|
warmup_lr_init=config.TRAIN.WARMUP_LR, |
|
warmup_t=warmup_steps, |
|
t_in_epochs=False, |
|
) |
|
elif config.TRAIN.LR_SCHEDULER.NAME == 'multistep': |
|
lr_scheduler = MultiStepLRScheduler( |
|
optimizer, |
|
milestones=multi_steps, |
|
gamma=config.TRAIN.LR_SCHEDULER.GAMMA, |
|
warmup_lr_init=config.TRAIN.WARMUP_LR, |
|
warmup_t=warmup_steps, |
|
t_in_epochs=False, |
|
) |
|
|
|
return lr_scheduler |
|
|
|
|
|
class LinearLRScheduler(Scheduler): |
|
def __init__(self, |
|
optimizer: torch.optim.Optimizer, |
|
t_initial: int, |
|
lr_min_rate: float, |
|
warmup_t=0, |
|
warmup_lr_init=0., |
|
t_in_epochs=True, |
|
noise_range_t=None, |
|
noise_pct=0.67, |
|
noise_std=1.0, |
|
noise_seed=42, |
|
initialize=True, |
|
) -> None: |
|
super().__init__( |
|
optimizer, param_group_field="lr", |
|
noise_range_t=noise_range_t, noise_pct=noise_pct, |
|
noise_std=noise_std, noise_seed=noise_seed, |
|
initialize=initialize) |
|
|
|
self.t_initial = t_initial |
|
self.lr_min_rate = lr_min_rate |
|
self.warmup_t = warmup_t |
|
self.warmup_lr_init = warmup_lr_init |
|
self.t_in_epochs = t_in_epochs |
|
if self.warmup_t: |
|
self.warmup_steps = [(v - warmup_lr_init) / |
|
self.warmup_t for v in self.base_values] |
|
super().update_groups(self.warmup_lr_init) |
|
else: |
|
self.warmup_steps = [1 for _ in self.base_values] |
|
|
|
def _get_lr(self, t): |
|
if t < self.warmup_t: |
|
lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] |
|
else: |
|
t = t - self.warmup_t |
|
total_t = self.t_initial - self.warmup_t |
|
lrs = [v - ((v - v * self.lr_min_rate) * (t / total_t)) |
|
for v in self.base_values] |
|
return lrs |
|
|
|
def get_epoch_values(self, epoch: int): |
|
if self.t_in_epochs: |
|
return self._get_lr(epoch) |
|
else: |
|
return None |
|
|
|
def get_update_values(self, num_updates: int): |
|
if not self.t_in_epochs: |
|
return self._get_lr(num_updates) |
|
else: |
|
return None |
|
|
|
|
|
class MultiStepLRScheduler(Scheduler): |
|
def __init__(self, optimizer: torch.optim.Optimizer, |
|
milestones, gamma=0.1, warmup_t=0, |
|
warmup_lr_init=0, t_in_epochs=True) -> None: |
|
super().__init__(optimizer, param_group_field="lr") |
|
|
|
self.milestones = milestones |
|
self.gamma = gamma |
|
self.warmup_t = warmup_t |
|
self.warmup_lr_init = warmup_lr_init |
|
self.t_in_epochs = t_in_epochs |
|
if self.warmup_t: |
|
self.warmup_steps = [(v - warmup_lr_init) / |
|
self.warmup_t for v in self.base_values] |
|
super().update_groups(self.warmup_lr_init) |
|
else: |
|
self.warmup_steps = [1 for _ in self.base_values] |
|
|
|
assert self.warmup_t <= min(self.milestones) |
|
|
|
def _get_lr(self, t): |
|
if t < self.warmup_t: |
|
lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] |
|
else: |
|
lrs = [v * (self.gamma ** bisect_right(self.milestones, t)) |
|
for v in self.base_values] |
|
return lrs |
|
|
|
def get_epoch_values(self, epoch: int): |
|
if self.t_in_epochs: |
|
return self._get_lr(epoch) |
|
else: |
|
return None |
|
|
|
def get_update_values(self, num_updates: int): |
|
if not self.t_in_epochs: |
|
return self._get_lr(num_updates) |
|
else: |
|
return None |
|
|
|
|
|
def setup_scaled_lr(config): |
|
|
|
|
|
|
|
batch_size = config.DATA.BATCH_SIZE |
|
|
|
world_size = dist.get_world_size() |
|
|
|
denom_const = 512.0 |
|
|
|
accumulation_steps = config.TRAIN.ACCUMULATION_STEPS |
|
|
|
linear_scaled_lr = config.TRAIN.BASE_LR * \ |
|
batch_size * world_size / denom_const |
|
|
|
linear_scaled_warmup_lr = config.TRAIN.WARMUP_LR * \ |
|
batch_size * world_size / denom_const |
|
|
|
linear_scaled_min_lr = config.TRAIN.MIN_LR * \ |
|
batch_size * world_size / denom_const |
|
|
|
|
|
if accumulation_steps > 1: |
|
linear_scaled_lr = linear_scaled_lr * accumulation_steps |
|
linear_scaled_warmup_lr = linear_scaled_warmup_lr * accumulation_steps |
|
linear_scaled_min_lr = linear_scaled_min_lr * accumulation_steps |
|
|
|
return linear_scaled_lr, linear_scaled_warmup_lr, linear_scaled_min_lr |
|
|