Upload 3 files
Browse files- app_predict_penguin_706.py +52 -0
- model_penguin_706.pkl +3 -0
- requirements.txt +4 -0
app_predict_penguin_706.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import streamlit as st
|
3 |
+
import pickle
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
# Load the model and encoders
|
7 |
+
with open('model_penguin_706.pkl', 'rb') as file:
|
8 |
+
model, species_encoder, island_encoder, sex_encoder = pickle.load(file)
|
9 |
+
|
10 |
+
# Streamlit app layout
|
11 |
+
st.title('Penguin Species Prediction')
|
12 |
+
|
13 |
+
# Create user input fields
|
14 |
+
st.sidebar.header('Input Features')
|
15 |
+
|
16 |
+
# User inputs
|
17 |
+
species = st.sidebar.selectbox('Species', species_encoder.classes_)
|
18 |
+
island = st.sidebar.selectbox('Island', island_encoder.classes_)
|
19 |
+
sex = st.sidebar.selectbox('Sex', sex_encoder.classes_)
|
20 |
+
|
21 |
+
# Slider for numeric inputs
|
22 |
+
bill_length_mm = st.sidebar.slider('Bill Length (mm)', 30.0, 60.0, 45.0)
|
23 |
+
bill_depth_mm = st.sidebar.slider('Bill Depth (mm)', 10.0, 25.0, 18.0)
|
24 |
+
flipper_length_mm = st.sidebar.slider('Flipper Length (mm)', 170.0, 240.0, 200.0)
|
25 |
+
body_mass_g = st.sidebar.slider('Body Mass (g)', 2500.0, 6000.0, 4000.0)
|
26 |
+
|
27 |
+
# Prepare the input data (ensure columns are in the same order as expected by the model)
|
28 |
+
input_data = pd.DataFrame({
|
29 |
+
'species': [species],
|
30 |
+
'island': [island],
|
31 |
+
'sex': [sex],
|
32 |
+
'bill_length_mm': [bill_length_mm],
|
33 |
+
'bill_depth_mm': [bill_depth_mm],
|
34 |
+
'flipper_length_mm': [flipper_length_mm],
|
35 |
+
'body_mass_g': [body_mass_g]
|
36 |
+
})
|
37 |
+
|
38 |
+
# Apply encoding to categorical features (check column names here!)
|
39 |
+
input_data['species'] = species_encoder.transform(input_data['species'])
|
40 |
+
input_data['island'] = island_encoder.transform(input_data['island'])
|
41 |
+
input_data['sex'] = sex_encoder.transform(input_data['sex'])
|
42 |
+
|
43 |
+
# Ensure the columns are in the correct order
|
44 |
+
expected_columns = ['species', 'island', 'sex', 'bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', 'body_mass_g']
|
45 |
+
input_data = input_data[expected_columns]
|
46 |
+
|
47 |
+
# Make prediction
|
48 |
+
prediction = model.predict(input_data)
|
49 |
+
|
50 |
+
# Show the result
|
51 |
+
st.write(f'Predicted Species: {species_encoder.inverse_transform(prediction)}')
|
52 |
+
|
model_penguin_706.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a76cf9dba49c9eb1c8f3a0e955658f5c129def6bfb4a1516ae108e75724e08b2
|
3 |
+
size 29968
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
scikit-learn
|
3 |
+
pandas
|
4 |
+
|