zalo_test_1 / app.py
naot97's picture
Update app.py
ac2d9b2
raw
history blame
4.05 kB
import torch
from peft import PeftModel
import transformers
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-1b1")
BASE_MODEL = "bigscience/bloom-1b1"
LORA_WEIGHTS = "naot97/bloom1b1-zalo-test"
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except:
pass
if device == "cuda":
model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
load_in_8bit=False,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
)
# def generate_prompt(instruction, input=None):
# if input:
# return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
# ### Instruction:
# {instruction}
# ### Input:
# {input}
# ### Response:"""
# else:
# return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
# ### Instruction:
# {instruction}
# ### Response:"""
if device != "cpu":
model.half()
model.eval()
if torch.__version__ >= "2":
model = torch.compile(model)
def evaluate(
instruction,
**kwargs,
):
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
prompt = instruction
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
return output[len(input_ids):]
g = gr.Interface(
fn=evaluate,
inputs= gr.components.Textbox(
lines=2, label="Instruction", placeholder="Tell me raw text."
),
outputs= gr.inputs.Textbox(
lines=5,
label="Output",
),
title="bloom 1b1",
description="",
)
g.queue(concurrency_count=1)
g.launch()
# Old testing code follows.
"""
if __name__ == "__main__":
# testing code for readme
for instruction in [
"Tell me about alpacas.",
"Tell me about the president of Mexico in 2019.",
"Tell me about the king of France in 2019.",
"List all Canadian provinces in alphabetical order.",
"Write a Python program that prints the first 10 Fibonacci numbers.",
"Write a program that prints the numbers from 1 to 100. But for multiples of three print 'Fizz' instead of the number and for the multiples of five print 'Buzz'. For numbers which are multiples of both three and five print 'FizzBuzz'.",
"Tell me five words that rhyme with 'shock'.",
"Translate the sentence 'I have no mouth but I must scream' into Spanish.",
"Count up from 1 to 500.",
]:
print("Instruction:", instruction)
print("Response:", evaluate(instruction))
print()
"""